بهینه‌سازی تزریق حفره با استفاده از لایه ترکیبی اکسید گرافن و اکسید مولیبدن جهت افزایش طول عمر دیودهای نورتاب آلی

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه حکیم سبزوار، سبزوار، ایران.

10.30501/jamt.2019.99514

چکیده

با توجه به بحران انرژی در عصر کنونی، تولید ادوات در زمینه مصرف انرژی باید به سمت و سویی حرکت کند که از نظر مصرف کاملا بهینه و از نظر طول عمر تا حد ممکن زیاد باشد که خود هزینه­های تولید را کاهش می­دهد. دیودهای ­نورتاب آلی (OLED) نسل جدیدی از ادوات نورتاب هستند که از مزایای ویژه­ای نسبت به دیگر چراغ­ها برخوردار هستند. نازک و سبک بودن، انعطاف­پذیر بودن، شفاف بودن و راحتی در ساخت از جمله این ویژگی­ها است. این دیودها متشکل از لایه­های تزریق­کننده حفره، الکترون و لایه نورتاب هستند. وظیفه اصلی لایه­های تزریق­کننده الکترون و حفره، ارسال حامل بار به لایه نورتاب است. بازترکیب در لایه نورتاب صورت می­پذیرد که منجر به تولید نور می­شود. در این کار تمرکز اصلی روی بهینه کردن تزریق حفره به منظور افزایش طول عمر دیودها قرار داده شده است. از ترکیبات متفاوت محلول اکسید مولیبدن (MoOx) و گرافن اکساید (GO) در ساخت لایه­ی تزریق­کننده حفره استفاده شد. بیشترین بازده مربوط به ترکیب نسبت 1:1 (نسبت حجمی) بود که به بازده توان lm/W  5/7 توانست برسد. طول عمر دیود بهینه شده با دیود استاندارد ساخته شده با PEDOT:PSS مقایسه شد به­طوری که نسبت به آن حدود 30 برابر افزایش داشت.

کلیدواژه‌ها


عنوان مقاله [English]

The Optimization of Hole Injection using Composite layer Containing of Graphene Oxide/Molybdenum Oxide in order to Enhance in Lifetime of Organic Light Emitting Diode

نویسندگان [English]

  • Hassan Alehdaghi
  • Mohammad Zirak
Department of physics, Hakim Sabzevari University, Sabzevar, Iran.
چکیده [English]

As to the crisis of energy in the recent years, devices manufacturing industry must be go toward the optimizing of energy consumption and increment in the lifetime leading to reduce production cost. Organic light emitting diodes (OLED) are one of the modern generations in the lighting industry that have many advantages such as being light and thin, flexibility, ability to be transparent, and easy to fabricate. These devices consist of hole injecting layer/electron and emissive layer. The main role of hole/electron injection layers is injection of charge carriers to emissive layer where electrons and holes recombinate and create photons. In this work we focused on optimization of hole injection in order to increase lifetime of device. We used the different composition of molybdenum oxide (MoOx) and graphene oxide (GO) in hole injection layer. The maximum efficiency of the devices owned to the composite thin film with 1:1 value ratio (MoOx:GO) that it could be reached to 7.5 lm/W.  The lifetime of the optimization of composite was compared to the standard device fabricated with PEDOT:PSS so that the results showed a 30 times enhancement in lifetime.

کلیدواژه‌ها [English]

  • OLED
  • MoOx
  • GO
  • Lifetime
  1.       K. Fehse, K. Walzer, K. Leo, W. Lövenich, A. Elschner, Highly Conductive Polymer Anodes as Replacements for Inorganic Materials in High‐Efficiency Organic Light‐Emitting Diodes, Advanced Materials, 2007, 19, 441-444.
  2.       M. Lu, P. de Bruyn, H.T. Nicolai, G.-J.A. Wetzelaer, P.W. Blom, Hole-enhanced electron injection from ZnO in inverted polymer light-emitting diodes, Organic Electronics, 2012, 13, 1693-1699.
  3.       C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Applied physics letters, 1987, 51, 913-915.
  4.       H.-S. Kim, D.-K. Kim, An Active-Matrix OLED Driver CMOS IC With Compensation of Non-Uniform Routing-Line Resistances in Ultra-Thin Panel Bezel, IEEE Journal of Solid-State Circuits, 2018, 53, 484-500.
  5.       S.B. Shin, S.C. Gong, H.M. Lee, J.G. Jang, M.S. Gong, S.O. Ryu, J.Y. Lee, Y.C. Chang, H.J. Chang, Improving light efficiency of white polymer light emitting diodes by introducing the TPBi exciton protection layer, Thin Solid Films, 2009, 517, 4143-4146.
  6.       K. Norrman, M.V. Madsen, S.A. Gevorgyan, F.C. Krebs, Degradation patterns in water and oxygen of an inverted polymer solar cell, Journal of the American Chemical Society, 2010, 132, 16883-16892.
  7.        J. Huang, P.F. Miller, J.S. Wilson, A.J. de Mello, J.C. de Mello, D.D. Bradley, Investigation of the effects of doping and post‐deposition treatments on the conductivity, morphology, and work function of poly (3, 4‐ethylenedioxythiophene)/poly (styrene sulfonate) films, Advanced Functional Materials, 2005, 15, 290-296.
  8.       A.M. Nardes, M. Kemerink, M. De Kok, E. Vinken, K. Maturova, R. Janssen, Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol, Organic electronics, 2008, 9, 727-734.
  9.       Kogo, Y. Sanehira, Y. Numata, M. Ikegami, T. Miyasaka, Amorphous Metal Oxide Blocking Layers for Highly Efficient Low-Temperature Brookite TiO2-Based Perovskite Solar Cells, ACS applied materials & interfaces, 2018, 10, 2224-2229.
  10.       M. Najafi, F. Di Giacomo, D. Zhang, S. Shanmugam, A. Senes, W. Verhees, A. Hadipour, Y. Galagan, T. Aernouts, S. Veenstra, Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers, Small, 2018, 14, 1702775.
  11.     H.J. Bolink, E. Coronado, D. Repetto, M. Sessolo, E.M. Barea, J. Bisquert, G. Garcia‐Belmonte, J. Prochazka, L. Kavan, Inverted Solution Processable OLEDs Using a Metal Oxide as an Electron Injection Contact, Advanced Functional Materials, 2008, 18, 145-150.
  12.        Bretos, R. Jiménez, J. Ricote, M.L. Calzada, Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes, Chemical Society Reviews, 2018, 47, 291-308.
  13.     C.-T. Tsai, Y.-H. Liu, J.-F. Tang, P.-C. Kao, C.-H. Chiang, S.-Y. Chu, Effects of novel transition metal oxide doped bilayer structure on hole injection and transport characteristics for organic light-emitting diodes, Synthetic Metals, 2018, 243, 121-126.
  14.     C.P. Chen, Y.D. Chen, S.C. Chuang, High‐Performance and Highly Durable Inverted Organic Photovoltaics Embedding Solution‐Processable Vanadium Oxides as an Interfacial Hole‐Transporting Layer, Advanced Materials, 2011, 23, 3859-3863.
  15.     D.B. Kim, J.C. Yu, Y.S. Nam, D.W. Kim, E.D. Jung, S.Y. Lee, S. Lee, J.H. Park, A.-Y. Lee, B.R. Lee, Improved performance of perovskite light-emitting diodes using a PEDOT: PSS and MoO 3 composite layer, Journal of Materials Chemistry C, 2016, 4, 8161-8165.
  16.     J.H. Youn, S.J. Baek, H.P. Kim, D.H. Nam, Y. Lee, J.G. Lee, J. Jang, Improving the lifetime of a polymer light-emitting diode by introducing solution processed tungsten-oxide, Journal of Materials Chemistry C, 2013, 1, 3250-3254.
  17.     H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, J. Jang, H. Zare, Investigating the different conditions on solution processed MoOx thin film in long lifetime fluorescent polymer light emitting diodes, Materials Chemistry and Physics, 2018, 204, 262-268.
  18.     H.J. Bolink, E. Coronado, J. Orozco, M. Sessolo, Efficient polymer light‐emitting diode using air‐stable metal oxides as electrodes, Advanced Materials, 2009, 21, 79-82.
  19.     J.M. Yun, J.S. Yeo, J. Kim, H.G. Jeong, D.Y. Kim, Y.J. Noh, S.S. Kim, B.C. Ku, S.I. Na, Solution‐processable reduced graphene oxide as a novel alternative to PEDOT: PSS hole transport layers for highly efficient and stable polymer solar cells, Advanced Materials, 2011, 23, 4923-4928.
  20.     B.R. Lee, J.-w. Kim, D. Kang, D.W. Lee, S.-J. Ko, H.J. Lee, C.-L. Lee, J.Y. Kim, H.S. Shin, M.H. Song, Highly efficient polymer light-emitting diodes using graphene oxide as a hole transport layer, Acs Nano, 2012, 6, 2984-2991.
  21.     H.J. Lee, B.R. Lee, J.S. Park, S.O. Kim, J.Y. Kim, M.H. Song, Hybrid organic-inorganic light-emitting electrochemical cells using fluorescent polymer and ionic liquid blend as an active layer, Applied Physics Letters, 2011, 98, 123.
  22.     T.M. Brown, R.H. Friend, I. Millard, D. Lacey, J.H. Burroughes, F. Cacialli, Efficient electron injection in blue-emitting polymer light-emitting diodes with LiF/Ca/Al cathodes, Applied Physics Letters, 2001, 79, 174-176.
  23.      L. Hung, C.W. Tang, M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode, Applied Physics Letters, 1997, 70, 152-154.
  24.      I.S. Oh, G.M. Kim, S.H. Han, S.Y. Oh, PEDOT: PSS-free organic photovoltaic cells using tungsten oxides as buffer layer on anodes, Electronic Materials Letters, 2013, 9, 375-379.
  25.      Kanwat, W. Milne, J. Jang, Vertical phase separation of PSS in organic photovoltaics with a nickel oxide doped PEDOT: PSS interlayer, Solar Energy Materials and Solar Cells, 2015, 132, 623-631.