سنتز لایه نازک نانوساختار زیرکونات تیتانات سرب بر پایه الکل‌‌های چند‌‌عاملی

نوع مقاله: مقاله پژوهشی

نویسنده

گروه مهندسی نانوفناوری، دانشکده علوم و فناوری‌‌های نوین- دانشگاه اصفهان، اصفهان، ایران.

چکیده

در پژوهش حاضر لایه‌‌های نازک نانوساختار زیرکونات تیتانات سرب  (PZT)به‌‌روش سل- ژل با استفاده از پیش‌‌مواد کلریدی و یک الکل چندعاملی سنتز گردیدند. پروپیلن گلایکل هم به‌عنوان عامل چنگاله‌کننده[1] و هم به‌عنوان حلال در تهیه سل PZT و به‌منظور تولید لایه‌های نازک با کیفیت PZT به­کار گرفته ‌شد. پس از تهیه زیرلایه، لایه‌‌های PZT به ‌‌روش چرخشی بر زیرلایه Au/SiO2 انباشت شدند و هر لایه پس از خشک‌شدن در دمای C°450 پیرولیز گردید. پخت لایه نازک نهایی نیز در دمای  ºC575 انجام شد. مشاهده‌ شد که روش حاضر دارای مزیت‌های متعددی است: مواد اولیه در این روش ارزان قیمت است، برخلاف روش متداول آلکوکساید، سل‌‌ PZT به­دست‌آمده از این روش پایداری بسیار زیادی داشته و علی­رغم گذشت چندین سال از زمان تولید همچنان پایدار است و مطالعه رفتار حرارتی ژل  PZTتولید شده با DTA/TGA نشان‌ می­دهد که دمای تشکیل فاز پروسکایت PZT در محدوه 450 تا ºC575 است، در حالی‌که در روش متداول آلکوکساید ºC650 و بالاتر است. بررسی‌های پراش اشعه ایکس (XRD) تشکیل ساختار پروسکایت PZT در دمایºC 575 را تایید کرد. از تصاویر میکروسکوپ الکترونی روبشی (SEM) و میکروسکوپ نوری نیز برای بررسی کیفیت سطح لایه‌ها استفاده شد که حصول لایه‌‌های نانوساختار یکنواخت را نشان دادند. برای تایید مجدد ترکیب، آنالیز EDS به همراه SEM صورت گرفت که تایید­کننده حضور عناصر تشکیل‌دهنده ترکیب PZT می‌‌باشد.


کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of Lead Zirconate Titanate Nanostructured Thin Films Using Polyols

نویسنده [English]

  • Abolghasem Nourmohammadi
Department of Nanotechnology Engineering, Faculty of Advanced Science and Technologies, University of Isfahan, Isfahan, Iran.
چکیده [English]

Here, nanostructured lead zirconate titanate (PZT) thin films were deposited on Au/SiO2 substrates through the polyol-based sol-gel process using chloride precursors and a dihydric alcohol. Propylene glycol was used as both the chelating agent and the solvent to prepare high-quality PZT thin films. Our polyol-based method exhibited several advantages: The process is cost-effective because of the low cost of the precursors, also, unlike the conventional alkoxide-based method, the prepared PZT sols were stable for several years, and the perovskite PZT phase could form at low temperature, within 450 -575°C, according to DTA/TG results. Thus, once the substrate was prepared, PZT layers were deposited by spin coating the sol, followed by ambient drying and pyrolysis at 450°C. The final PZT thin films were annealed at 575°C. X-ray diffraction (XRD) analysis confirmed crystallization of the PZT perovskite structure at 575°C in the annealed nanostructured films. Both optical and SEM images showed that PZT films are uniform and crack free. The EDS analysis confirmed that the films consist of the PZT components. 

کلیدواژه‌ها [English]

  • Ferroelectrics
  • Thin films
  • Sol-gel preparation
  • PZT
  • Polyols

1. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Park, G. Stephenson, Ferroelectric thin films: Review of materials, properties, and applications, Journal of Applied Physics, 100 (2006) 051606.

2. N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoç, H. Lee, Y.-S. Kang, Processing, structure, properties, and applications of PZT thin films, Critical Reviews in Solid State and Materials Sciences, 32 (2007) 111-202.

3. D. Newns, B. Elmegreen, X.-H. Liu, G. Martyna, The piezoelectronic transistor: A nanoactuator-based post-CMOS digital switch with high speed and low power, MRS bulletin, 37 (2012) 1071-1076.

4. A. Safari, E.K. Akdogan, Piezoelectric and acoustic materials for transducer applications, Springer Science & Business Media, 2008.

5. F. Griggio, H. Kim, S. Ural, T. Jackson, K. Choi, R. Tutwiler, S. Trolier-Mckinstry, Medical Applications of Piezoelectric Microelectromechanical Systems, Integrated Ferroelectrics, 141 (2013) 169-186.

6. G. Ovchinnikova, Y.A. Pirogov, N. Bobkov, N. Belugina, R. Gainutdinov, A. Tolstikhina, AFM investigation of the mechanism for microwave effect on ferroelectric triglycine sulfate, Physics of Wave Phenomena, 21 (2013) 52-55.

7.     A.J. Moulson, J.M. Herbert, Electroceramics: materials, properties, applications, John Wiley & Sons, 2003.

8.      Q. Zou, S. Nourbakhsh, J. Kim, Novel polyol-derived sol route for fabrication of PZT thin ferroelectric films, Materials Letters, 40 (1999) 240-245.

9.    A.D. Polli, F.F. Lange, C.G. Levi, Metastability of the Fluorite, Pyrochlore, and Perovskite Structures in the PbO—ZrO2—TiO2 System, Journal of the American Ceramic Society, 83 (2000) 873-881.

10.    X. Meng, J. Cheng, B. Li, S. Guo, H. Ye, J. Chu, Low-temperature preparation of highly (1 1 1) oriented PZT thin films by a modified sol–gel technique, Journal of Crystal Growth, 208 (2000) 541-545.

11.   H. Gavilán, E.H. Sánchez, M.E. Brollo, L. Asín, K.K. Moerner, C. Frandsen, F.J. Lázaro, C.J. Serna, S. Veintemillas-Verdaguer, M.P. Morales, Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process, ACS Omega, 2 (2017) 7172-7184.

12.   D.R. Lide, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, CRC press, 1995.

13.  Z. Chen, W. Jin, Z. Lu, C. Hu, Ferromagnetic and photocatalytic properties of pure BiFeO 3 powders synthesized by ethylene glycol assisted hydrothermal method, Journal of Materials Science: Materials in Electronics, 26 (2015) 1077-1086.

14.   K. Babooram, Z.-G. Ye, New soft chemical routes to ferroelectric SrBi2Ta2O9, Chemistry of materials, 18 (2006) 532-540.

15.   B. Abbasi, H. Guo, H. Wu, H.N. Tailor, Z.-G. Ye, An ethylene glycol-based new sol-gel route to multiferroic (1–x) LaCrO3–x BiCrO3 solid solution, Canadian Journal of Chemistry, 96 (2017) 255-259.

16.     P. Belleville, J. Bigarre, P. Boy, Y. Montouillout, Stable PZT sol for preparing reproducible high-permittivity perovskite-based thin films, Journal of sol-gel science and technology, 43 (2007) 213-221.

17.     A. Bardaine, P. Boy, P. Belleville, O. Acher, F. Levassort, Improvement of composite sol–gel process for manufacturing 40 μm piezoelectric thick films, Journal of the European Ceramic Society, 28 (2008) 1649-1655.

18.    X. Jiang, Y. Wang, T. Herricks, Y. Xia, Ethylene glycol-mediated synthesis of metal oxide nanowires, Journal of Materials Chemistry, 14 (2004) 695-703.

19.  S. Budavari, The Merck Index, an encyclopedia of chemical drug, and biologicals, in, Merck, 1989.

20.   W.J. Rossiter Jr, M. Godette, P.W. Brown, K.G. Galuk, An investigation of the degradation of aqueous ethylene glycol and propylene glycol solutions using ion chromatography, Solar Energy Materials, 11 (1985) 455-467.

21.   T.I. Chang, S.C. Wang, C.P. Liu, C.F. Lin, J.L. Huang, Thermal behaviors and phase evolution of lead zirconate titanate prepared by sol–gel processing: the role of the pyrolysis time before calcination, Journal of the American Ceramic Society, 91 (2008) 2545-2552.