سنتز ترمو- مکانوشیمیایی ، بررسی خواص فیزیکی و مغناطیسی نانو ذرات فریت کبالت – منیزیم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی معدن و مواد، دانشگاه صنعتی ارومیه

2 دانشکده مهندسی مواد، دانشگاه تبریز

چکیده

جانشینی Mg2+ در نانو ذرات فریت کبالت باعث بهبود خواصی از قبیل پایداری شیمیایی ، مقاومت به خوردگی ، ناهمسانگردی کریستال های  مغناطیسی و  خواص نوری - مغناطیسی می شود. در این تحقیق آلیاژ سازی مکانیکی به عنوان یک روش ساده و ارزان  برای تولید نانو ذرات فریت کبالت - منیزیم به کار گرفته شد و خواص فیزیکی و مغناطیسی فریت به دست آمده بررسی شده است. به منظور مشخصه­یابی محصولات از پراش پرتو ایکس و میکروسکوپ الکترونی روبشی استفاده شد. شکل ذرات پودری حاصل از آسیاب نامنظم و اندازه شان در محدوده 5-48 نانومتر می باشد. نتایج XRD نشان داد پس از 30 ساعت آسیاکاری و زینتر در دماهایی بیش از ºC 700  تک فاز فریت کبالت - منیزیم تشکیل شد و اندازه دانه ها از 33 تا 85 نانومتر و کرنش شبکه 88/0 تا 75/0 درصد تخمین زده شد. با افزایش دمای زینترینگ از  700  تا ºC 1100 خواص مغناطیسی تک فاز تولید شده بهبود یافته و نفوذ پذیری مغناطیسی با افزایش دمای زینترینگ به دلیل تغییر ساختاری افزایش یافت. آنالیز نتایج نشان داد در دمای زینترینگ پایین (زیر ºC 1000) خواص پارامغناطیسی و در دمای بالاتر از ºC 1000 حالت فرومغناطیس شدید با حلقه پسماند S شکل بر نمونه حاکم است.

کلیدواژه‌ها


عنوان مقاله [English]

Thermo mechano-chemical synthesis, physical characterization and magnetic properties of Co-Mg-ferrite nanoparticles

نویسندگان [English]

  • Vahid Abbasi Chianeh 1
  • Abdollah Hajalilou 2
1 Department of Mining and materials Engineering, Urmia University of Technology, Urmia
2 Department of Materials Engineering, University of Tabriz, Tabriz
چکیده [English]

Co-Mg-Ferrite single phase is synthesized using mechanical alloying method. XRD and SEM were used in characterizing the samples. XRD results illustrate that after 30 hours of milling and sintering at 700oC, single phase of Co-Mg-ferrite is produced. Increasing the sintering temperature from 700 to 1100oC resulted in improved magnetic properties. Paramagnetic properties in samples sintered below 1000oC are dominant while sintering at 1100oC produced a strongly ferromagnetic state giving a well-formed sigmoid-shape hysteresis loop.

کلیدواژه‌ها [English]

  • Co-Mg-Ferrite single phase
  • Magnetic properties
  • mechanical alloying

     [1]            M. Kaiser, Effect of nickel substitutions on some properties of Cu–Zn ferrites. J. Alloys Compd. 468, 15–21 (2009).

     [2]             M.J. Iqbal, M.R. Siddiquah, Electrical and magnetic properties of chromium-substituted cobalt ferrite nanomaterials. J. Alloys Compd. 453, 513–518 (2008).

     [3]             M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures.J. Alloys Compd. 481, 515–519 (2009).

     [4]            I.H. Gul, A. Maqsood, Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J. Alloys Compd. 465, 227–231 (2008).

     [5]            Y. Koseoglu, A. Baykal, M.S. Toprak, F. Go¨zu¨ak, A.C. Basaran, B. Akas, Synthesis and characterization of ZnFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Alloys Compd. 462, 209–213 (2008).

     [6]            A. Franco Jr., F. C.Silva, Vivien S. Zapf, High temperature magnetic properties of Co1-xMgxFe2O4 nanoparticles prepared by forced hydrolysis method, J. Appl. Phys. 111 (2012), 07B530.

     [7]            owreesan, S. & Ruban Kumar, A. J Mater Sci, Effects of Mg2+ ion substitution on the structural and electric studies of spinel structure of Co12xMgxFe2O4 Mater Electron (2017) 28: 4553. 

     [8]            Qin  Liqin, Gao Minlin, Wu Wenwein,  Ou Shiqian, Wang Kaituo, Liu Bang, Wu Xuehang, Co1_xMgxFe2O4 magnetic particles: Preparation and kinetics research of thermal transformation of the precursor, Ceramics International 40 (2014) 10857–10866.

     [9]            epahvandi, R., Masoudi, H., Khosravi, E. et al., Structural and Magnetic Properties of Co1−x Mg x Fe2 O 4Nanoparticles Synthesized by Microwave-Assisted Combustion Method, J Supercond Nov Magn (2017) 30, 1801

  [10]            G.V. Kurlyandskaya, J. Cunanan, S.M. Bhagat, J.C. Aphesteguy, S.E. Jacobo, Field-induced microwave absorption in Fe3O4 nanoparticles and Fe3O4/polyaniline composites synthesized by different methods. J. Phys. Chem. Solids 68, 1527–1532 (2007).

  [11]             F. Gozuak, Y. Koseoglu, A. Baykal, and H. Kavas, Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route, Journal of Magnetism and Magnetic Materials, vol. 321, no. 14, pp. 2170–2177, )2009(.

  [12]            S.C. Tjong, H. Chen, Nanocrystalline materials and coatings, Mater. Sci. Eng.R 45, pp. 1–88 (2004).

  [13]            P.M. Botta, R.C. Mercader, E.F. Aglietti, J.M. Porto Lopez,Synthesis of Fe–FeAl2O4–Al2O3 by high-energy ball milling of Al–Fe3O4 mixtures, Scr. Mater. 48, pp.1093-1098 (2003).

  [14]            R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, Thermomagnetic properties of Co1-xZnxFe2O4 (x = 0.1–0.5) nanoparticles. J. Magn. Magn. Mater. 303, 131–137 (2006).

  [15]             A. Tawfik, I.M. Hamada, O.M. Hemeda, Effect of laser irradiation on the structure and electromechanical properties of Co–Zn ferrite. J. Magn. Magn. Mater. 250, 77–82 (2002).

  [16]            G.V. Duong, N. Hanh, D.V. Linh, R. Groessinger, P. Weinberger, E. Schafler, M. Zehetbauer, Monodispersed nanocrystalline Co1-xZnxFe2O4 particles by forced hydrolysis: synthesis and characterization. J. Magn. Magn. Mater. 311, 46–50 (2007).

  [17]             C.K. Kim, J.H. Lee, S. Katoh, R. Murakami, M. Yoshimura, Synthesis of Co–Co–Zn and Ni–Zn ferrite powders by the microwave-hydrothermal method. Mater. Res. Bull. 36, 2241–2250 (2001).

  [18]             C. Suryanarayana, "Mechanical alloying and Milling", Progress in Materials Science, 46, 1184,( 2001).

  [19]            C. Hadef, A. Otmani, J. M. Greneche, Comparative study using MS and XRD of Fe80Al20 alloy produced by mechanical alloying, Science China Physics, Mechanics and Astronomy,56, 1504-1507 (2013)

 

  [20]            G. K. Williamson, W. H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metal 1(1953) 22-31.

 

  [21]            B. D. Cullity, Elements Of X Ray Diffraction, Addison Wesely Publishing Company, 1956.