بررسی رفتار ریزساختاری، مکانیکی و الکتریکی آلیاژهای مس- قلع تهیه شده به روش ریخته‌گری پیوسته

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه مراغه، مراغه، ایران

2 دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران

3 گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره) قزوین، ایران.

چکیده

در این پژوهش، آلیاژ مس- قلع با سه مقدار قلع مختلف 18/0، 3/0 و 5/0 درصد وزنی از طریق ریخته­گری پیوسته در دو دمای 1150 و 1180 درجه سانتی­گراد و دو سرعت سه و پنج متر بر دقیقه تهیه شدند. سپس خواص ریزساختاری و مکانیکی آنها مورد مطالعه قرار گرفته و با رفتار نمونه مس خالص مقایسه شد. نتایج دانه­بندی حاکی از آن است که نمونه­های ریختگی دارای ساختاری ستونی بوده که به صورت شعاعی از دیواره­ها به­طرف مرکز نمونه کشیده شده است. هم­چنین تاثیر افزایش مقدار عنصر آلیاژی در کشیدگی دانه­ها از هر دو پارامتر ریخته­گری بیشتر می­باشد. آنالیز میکروسکوپ الکترونی روبشی نشان داد که توزیع قلع در نمونه تقریباً همگن بوده و هیچ فازی که غنی از قلع باشد، ایجاد نمی­گردد. همچنین هدایت الکتریکی نمونه­ها با افزایش درصد قلع کاهشی جزیی پیدا کرده ولی دما و سرعت فرایند ریخته­گری تاثیری در این مقدار ندارد.

کلیدواژه‌ها


عنوان مقاله [English]

Microstructural, Mechanical and Electrical Behavior of Copper-Tin alloys Produced by Continuous Casting Technique

نویسندگان [English]

  • Mahmoud Ebrahimi 1
  • Shokouh Attarilar 2
  • mohammad hossein shaeri 3
  • Mohammad Taghi Saleh 2
1 Department of Mechanical Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran
2 School of Metallurgy and Materials Engineering, Iran University of Science and Technology
3 Department of Materials and Metallurgical Engineering, Engineering faculty, Imam Khomeini International University (IKIU), Qazvin, Iran.
چکیده [English]

Copper-tin alloys with three tin contents of 0.18, 0.3, and 0.5wt.% was produced by continuous casting process at the temperature of 1150 and 1180 ℃ and speed of 3 and 5 m/min; then, microstructure, electrical, and mechanical properties of produced alloys were determined and compared with the pure copper. It was found that all casting samples have similar columnar grains, elongated radially from walls to the center. Also, the effect of Sn content on the columniation of grains is more sizeable than both other casting parameters. The results of scanning electron microscopy indicated that the produced alloys have a single-phase structure and Sn distribution is almost homogeneous in the copper. Additionally, electrical conductivity is slightly reduced by the increment of the alloying element whereas casting temperature and speed do not have a considerable effect.

کلیدواژه‌ها [English]

  • Continuous Casting
  • Cu-Sn alloys
  • Mechanical properties
  • Electrical conductivity
  • Optical microscopy
  1. Askeland, D.R., Fulay, P.P., Wright, W.J., The Science and Engineering of Materials, Cengage Learning, 2010.
  2. Markovic, I., Nestorovic, S., Markovic, D., Guskovic, D., Properties Improvement and Microstructure Changes During Thermomechanical Treatment in Sintered Cu-Au Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24, 431-440.
  3. Grünberger, W., Heilmaier, M., Schultz, L., Development of High-Strength and High-Conductivity Conductor Materials for Pulsed High-Field Magnets at Dresden, Phys. B Condens. Matter, 2001, 294–295, 643–647.
  4. Ko, Y.G., Namgung, S., Lee, B.U., Shin, D.H., Mechanical and Electrical Responses of Nanostructured Cu-3wt%Ag Alloy Fabricated by ECAP and Cold Rolling, J. Alloys Compd., 2010, 504, 448–451.
  5. Tian, Y.Z., Wu, S.D., Zhang, Z.F., Figueiredo, R.B., Gao, N., Langdon, T.G., Comparison of Microstructures and Mechanical Properties of a Cu-Ag Alloy Processed Using Different Severe Plastic Deformation Modes, Mater. Sci. Eng. A, 2011, 528, 4331–4336.
  6. Liu, J.B., Zhang, L., Dong, A.P., Wang, L.T., Zeng, Y.W., Meng, L., Effects of Cr and Zr Additions on the Microstructure and Properties of Cu-6wt.% Ag Alloys, Mater. Sci. Eng. A, 2012, 532, 331–338.
  7. Zhang L., Meng, L., Evolution of Microstructure and Electrical Resistivity of Cu-12wt.%Ag Filamentary Microcomposite with Drawing Deformation, Scr. Mater., 2005, 52, 1187–1191.
  8. Liu, J.B., Meng, L., Zhang, L., Rare Earth Microalloying in As-Cast and Homogenized Alloys Cu-6 wt.% Ag and Cu-24 wt.% Ag, J. Alloys Compd., 2006, 425, 185–190.
  9. Xiao, D.H., Wang, J.N., Ding, D.Y., Yang, H.L., Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy, J. Alloys Compd., 2003, 352, 84–88.
  10. Ebrahimi, M. Attarilar, Sh. Shaeri, M.H. Gode, C., Armoon, H., Djavanroodi, F., An Investigation into the Effect of Alloying Elements on Corrosion Behavior of Severely Deformed Cu-Sn Alloys by Equal Channel Angular Pressing, Arch. Civ. Mech. Eng., 2019, 19, 842–850.
  11. Nestorović, S., Marković, I., Marković, D., Influence of Thermomechanical Treatment on the Hardening Mechanisms and Structural Changes of a Cast Cu-6.6 wt.%Ag Alloy, Mater. Des., 2010, 31, 1644–1649.
  12. Villanueva-Rey, P., Belo, S., Quinteiro, P., Arroja, L., Dias, A.C., Wiring in the Automobile Industry: Life Cycle Assessment of an Innovative Cable Solution, J. Clean. Prod., 2018, 204, 237–246.
  13. Lu, L., Shen, Y., Chen, X., Qian, L., Lu, K., Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 2004, 304, 422–426.
  14. Lu, F., Guang, Z., Ke-shi, Z., Grain Boundary Effects on the Inelastic Deformation Behavior of Bicrystals, Mater. Sci. Eng. A, 2003, 361, 83–92.
  15. Kimura, Y., Inoue, T., Yin, F., Tsuzaki, K., Inverse Temperature Dependence of Toughness in an Ultrafine Grain-Structure Steel, Science, 2008, 320, 1057–1060.
  16. Guan, R.G., Wang, C., Xing, Z.H., Lee, C.S., Hu, F.Y., Novel Sloping Plate Process for Semisolid Metal Forming, Mater. Sci. Technol., 2007, 23, 438–443.
  17. Kwon, Y.A., Daya, Z.A., Soda, H., Wang, Z., McLean, A., Deformation Behavior of Bismuth-Tin Alloy Wires with Eutectic Morphology Produced by the Ohno Continuous Casting Process, Mater. Sci. Eng. A, 2004, 368, 323–331.
  18. Liu, X., Luo, J., Wang, X., Wang, L., Xie, J., Columnar Grains-Covered Small Grains Cu–Sn Alloy Prepared by Two-Phase Zone Continuous Casting, Prog. Nat. Sci. Mater. Int., 2013, 23, 94–101.
  19. Craig, I.K., Camisani-Calzolari, F.R., Pistorius, P.C., A contemplative stance on the automation of continuous casting in steel processing, Control Eng. Pract., 2001, 9, 1013–1020.
  20. Kim, H.S., Kim, W.Y., Song, K.H., Effect of post-heat-treatment in ECAP processed Cu-40%Zn brass, J. Alloys Compd., 2012, 536, 200–203.
  21. Higgines, R., Bolton, B., Materials for Engineers and Technicians, Taylor & Francis, 2010.
  22. Smith, W.F., Structure and Properties of Engineering Alloys, McGraw-Hill, 1993.
  23. Cowper, W.G., Ohring, M., Solute Effects in Very Dilute Ternary C-Mn-Se Alloys, Mater. Sci. Eng. A, 1988, 101, 201–211.
  24. Behnood, N., Douthwaite, R.M., Evans, J.T., The Yield and Flow Stress of Cu-1%Cd Alloy, Acta Metall., 1980, 28, 1133–1142.
  25. Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, John Wolly & Sons, 1996.
  26. Labusch, R., Statistical Theories of Solid Solution Hardening, Acta Metall., 1972, 20, 917-927.
  27. Nabarro, F.R.N., The Theory of Solution Hardening, Philos. Mag., 1977, 35, 613-622.
  28. Ebrahimi, M., Shaeri, M.H., Gode, C., Armoon, H., Shamsborhan, M., The Synergistic Effect of Dilute Alloying and Nanostructuring of Copper on the Improvement of Mechanical and Tribological Response, Compos. Part. B, 2019, 164, 508-516.