بهبود رفتار خوردگی و چسبندگی پوشش‌ شیشه زیست‌فعال بر روی تیتانیم خالص تجاری با استفاده از ترکیب روش‌های اکسیداسیون میکروقوس و لایه‌نشانی الکتروفورتیک

نویسنده

Department of Metallurgy and Materials Engineering, University of Kashan

چکیده

در این پژوهش، ابتدا پوشش اکسید تیتانیم متخلخل حاوی کلسیم فسفات (CaP) بر روی زیر لایه تیتانیم خالص تجاری (CP-Ti) به وسیله فرآیند اکسیداسیون میکروقوس (MAO) در ولتاژهای مختلف 300، 330 و V 360 به مدت پنج دقیقه ایجاد شد. سپس، پوشش شیشه زیست‌فعال 45S5 (BG) به وسیله فرآیند لایه‌نشانی الکتروفورتیک (EPD) بر روی زیرلایه اصلاح شده، تشکیل شد. ترکیب فازی، عوامل ساختاری، ریز‌ساختار و ترکیب شیمیایی میان لایه MAO ایجاد شده در ولتاژهای مختلف و پوشش BG، به‌ترتیب به وسیله‌ پراش اشعه ایکس (XRD)، طیف‌سنجی تبدیل فوریه مادون قرمز (FT-IR)، میکروسکوپ الکترونی روبشی (SEM) و طیف‌سنجی تفرق انرژی (EDS) بررسی شد. رفتار حرارتی پوشش BG به وسیله آنالیز هم‌زمان گرماسنجی افتراقی (DSC) و توزین حرارتی (TG) مطالعه شد. میکروساختار به‌دست آمده بعد از اصلاح CP-Ti به روشMAO در ولتاژ V 360، نشان داد که لایه سطحی میکرومتخلخل TiO2 به‌طور گسترده ای با خوشه‌های به‌هم پیوسته هیدروکسی آپاتیت (HA) با نسبت کلسیم به فسفر نزدیک به استخوان تشکیل می‌شود. اندازه‌‌گیری‌های پلاریزاسیون پتانسیودینامیک در محلول شبیه سازی شده بدن (SBF) و آزمون ریزخراش نشان دادند که استفاده از پوشش BG بر روی CP-Ti اصلاح شده با استفاده از ترکیب روش‌های MAO و EPD باعث افزایش مقاومت به خوردگی و چسبندگی پوشش به زیرلایه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Corrosion and Bonding Strength Enhancements in Bioglass Coating on CP-Ti by Using a Combination of Micro-arc Oxidation and Electrophoretic Deposition

چکیده [English]

In the present study, micro-arc oxidation (MAO) was first applied under the voltages of 300, 330 and 360V for 5 min to form a porous calcium-phosphate containing titanium oxide layer on CP-Ti. Subsequently, 45S5 Bioglass (BG) film was deposited on the MAO layer by electrophoretic deposition (EPD) technique. The phase, structural agents, microstructure and composition of MAO interlayer and BG film were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Thermal behavior of the as-deposited BG coating was analyzed by simultaneous differential scanning calorimetry and thermal gravimetery. The microstructure of oxidized samples showed that the micro-porous TiO2 surface layer was widely covered with interconnected HA clusters with Ca/P ratio similar to human bone after MAO treatment under 360 V. The results of potentiodynamic polarization measurements in simulated body fluid solution and micro-scratch tests depicted that the combination of MAO treatment at 360 V and EPD of BG on CP-Ti could effectively increase the corrosion resistance as well as the bonding strength between coating and substrate.

کلیدواژه‌ها [English]

  • Micro-arc oxidation
  • Electrophoretic deposition
  • bioglass
  • corrosion
  • Bonding Strength
1. Farag, M.M., Rüssel, C., Glass-ceramic scaffolds derived from Bioglass® and glass with low crystallization affinity for bone regeneration, Materials Letters, 73 (2012) 161-165.
2. Farnoush, H., Abdi.Bastami, A., Sadeghi, A., Aghazadeh Mohandesi, J., Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution, Journal of the Mechanical Behavior of Biomedical Materials,  20 (2013) 90-97.
3. Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K., Ti based biomaterials, the ultimate choice for orthopaedic implants A review, Progress in Materials Science, 54(3) (2009) 397-425.
4. Sola, A., Bellucci, D., Cannillo, V., Cattini, A., Bioactive glass coatings: a review, Surface Engineering, 27(8) (2011) 560-572.
5. Abdi Bastami, A., Farnoush, H., Sadeghi, A., Aghazadeh Mohandesi, J., Sol–gel derived nanohydroxyapatite film on friction stir processed Ti–6Al–4V substrate, Surface Engineering, 29(3)  (2013) 205-210.
6. Boccaccini, A.R., Keim, S., Ma, R., Li, Y., Zhitomirsky, I., Electrophoretic deposition of biomaterials, Journal of The Royal Society Interface, 7 (2010) 581-613.
7. Farnoush, H., Mohandesi, J.A., Fatmehsari, D.H., Moztarzadeh, F., Modification of electrophoretically deposited nano-hydroxyapatite coatings by wire brushing on Ti–6Al–4V substrates, Ceramics International, 38 (2012) 4885-4893.
8. Farnoush, H., Aghazadeh Mohandesi, J., Haghshenas Fatmehsari, D., Moztarzadeh, F., A kinetic study on the electrophoretic deposition of hydroxyapatite–titania nanocomposite based on a statistical approach, Ceramics International, 38(8) (2012) 6753-6767.
9. Farnoush, H., Mohandesi, J.A., Fatmehsari, D.H., Effect of Particle Size on the Electrophoretic Deposition of Hydroxyapatite Coatings: A Kinetic Study Based on a Statistical Analysis, International Journal of Applied Ceramics Technology, 10(1) (2013) 87-96.
10. Farnoush, H., Sadeghi, A., Abdi Bastami, A., Moztarzadeh, F., Aghazadeh Mohandesi, J., An innovative fabrication of nano-HA coatings on Ti-CaP nanocomposite layer using a combination of friction stir processing and electrophoretic deposition, Ceramics International, 39(2) (2013) 1477-1483.
11. Cimenoglu, H., Gunyuz, M., Kose, G.T., Baydogan, M., Uğurlu, F., Sener, C., Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications, Materials Characterization, 62(3) (2011) 304-311.
12. Kokubo, T., Takadama, H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27(15) (2006) 2907-2915.
13. Abbasi, S.,  Bayati, M.R., Golestani-Fard, F., Rezaei, H.R., Zargar, H.R., Samanipour, F., Shoaei-Rad, V., Micro arc oxidized HAp–TiO2 nanostructured hybrid layers part I: Effect of voltage and growth time, Applied Surface Science, 257 (2011) 5944-5949.
14. LÜ, W.-l., Chen, T.-j., Ma, Y., Xu, W.-j., Yang, J., Hao, Y., Effects of increase extent of voltage on wear and corrosion resistance of micro-arc oxidation coatings on AZ91D alloy, Transactions of Nonferrous Metals Society of China, 18(1) (2008) s354-s360.
15. Müller, L., Müller, F.A., Preparation of SBF with different content and its influence on the composition of biomimetic apatites, Acta Biomaterialia, 2 (2006) 181-189.
16. Tao, X.J., Li, S.J., Zheng, C.Y., Fu, J., Guo, Z., Hao, Y.L., Yang, R., Guo, Z.X., Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation, Materials Science and Engineering: C, 29 (2009) 1923-1934.
17. Liu, X., Mou, Y., Wu, S., Man, H.C., Synthesis of silver-incorporated hydroxyapatite nanocomposites for antimicrobial implant coatings, Applied Surface Science, 273 (2013) 748-757.
18. Ryu, H.S., Song, W.-H., Hong, S.-H., Biomimetic apatite induction of P-containing titania formed by micro-arc oxidation before and after hydrothermal treatment, Surface and Coatings Technology, 202 (2008) 1853-1858.
19. Stern, M., Geary, A.L., Electrochemical Polarization: I . A Theoretical Analysis of the Shape of Polarization Curves, Journal of Electrochemical Society, 104(1) (1957) 56-63.
20. Barnes, D., Johnson, S., Snell, R., Best, S., Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly(carbonate urethane) substrates, Journal of Mechanical Behavior of Biomedical Materials, 6(0) (2012) 128-138.
21. Nath, S., Dey, A., Mukhopadhyay, A.K., Basu, B., Nanoindentation response of novel hydroxyapatite–mullite composites, Materials Science and Engineering A, 513–514(0) (2009) 197-201.
22. Forsgren, J., Svahn, F., Jarmar, T., Engqvist, H., Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates, Acta Biomaterialia, 3(6) (2007) 980-984.