بررسی رفتار رهایش داروی ضد سرطان دوکسوروبیسن از نانوکامپوزیت اکسید گرافن- مگنتیت

نویسندگان

1 پژوهشکده فناوری نانو، پژوهشگاه مواد و انرژی

2 پژوهشکده سرامیک، پژوهشگاه مواد و انرژی

چکیده

در سال‌های اخیر حضور مواد بر پایه گرافن مانند اکسید گرافن به دلیل دارا بودن ویژگی‌های منحصر به‌فردی رشد چشم‌گیری در حوزه پزشکی داشته است. در این تحقیق نانوکامپوزیت اکسید گرافن- مگنتیت با قابلیت رهایش کنترل شده دارو به روش سنتز هم‌رسوبی روی لایه‌های اکسید گرافن تولید شد. مطالعات فازی، مورفولوژی ذرات، خواص مغناطیسی و بارگذاری و رهایش دارو به‌ترتیب به روش‌های XRD، FE-SERM، VSM و طیف‌سنجی ماوراء بنفش-مرئی مورد بررسی قرار گرفت. طرح پراش اشعه ایکس شکل‌گیری مگنتیت و اکسید گرافن را در این کامپوزیت نشان داد. بررسی‌های میکروسکوپ الکترونی روبشی مشخص کرد اندازه متوسط ذرات مگنتیت سنتز شده 14 نانومتر است. مغناطش اشباع برای نانوکامپوزیت اکسید گرافن- مگنتیت emu/g 47 بود و این نانوکامپوزیت رفتار سوپر-پارامغناطیس از خود نشان داد. داروی دوکسوروبیسین هیدروکلراید روی این نانوکامپوزیت بارگذاری شد. بررسی‌های بارگذاری و رهایش دارو نشان داد که بازده کپسوله کردن و درصد بارگذاری دارو روی این سامانه به‌ترتیب 76/51% و 68/34% است. مدل رهایش این دارو مدل کورسمایر- پپاس تشخیص داده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Drug Loading and Release Behavior of Graphene Oxide/Magnetite Nanocomposite

نویسندگان [English]

  • reyhaneh farazi 1
  • mohammad reza vaezi 1
  • mohammad jafar molaei 2
  • maryam saeidifar 1
  • ali asghar behnam ghader 1
1 Institute of Nanotechnology, Materials and Energy Research Institute
2 Institute of Ceramics, Institute of Materials and Energy
چکیده [English]

Graphene based materials such as graphene oxide have been developed in the biomedical applications during recent years. In this research, graphene oxide/magnetite nanocomposite with drug controlled release ability was synthesized through coprecipitation on graphene oxide sheets. Phase analysis, particles morphology, magnetic properties, drug loading and release behavior of the synthesized nanocomposite was investigated using XRD, FESEM, VSM and UV-visible spectroscopy, respectively. XRD pattern showed formation of the graphene oxide/magnetite nanocomposite. FESEM images revealed that the mean particles size is 14 nm. The synthesized nanocomposite showed superparamagnetic characteristics while the saturation magnetization of the nanocomposite was 47 emu/g. Doxorubicin hydrochloride as an anti-cancer drug was loaded on the nanocomposite. Encapsulation efficiency and loading of the drug for the nanocomposite were 51.76% and 34.68%, respectively. The release model of the drug was best matched with Korsmeyer-Peppas model.

کلیدواژه‌ها [English]

  • graphene oxide
  • Magnetite
  • Superparamagnetic
  • Drug Delivery
  • doxorubicin hydrochloride
1. Alibeigi, S., Vaezi, M.R., Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+: Fe3+, Chemical Engineering & Technology, 31 (11) (2008) 1591-1596.
2. Cao, L., Yin, S., Liang, Y., Zhu, J., Fang, C., Chen, Z., Preparation and characterisation of magnetic Fe3O4/graphene oxide nanocomposites, Materials Research Innovations, 19 (2015) 364-368.
3. Chaiyakun, S., Witit-Anun, N., Nuntawong, N., Chindaudom, P., Oaew, S., Kedkeaw, C., Limsuwan, P., Preparation and characterization of graphene oxide nanosheets, Procedia Engineering, 32, (2012) 759-764. 
4. Chen, J., Li, Y., Huang, L., Li, C., Shi, G., High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process, Carbon, 81 (2015) 826-834. 
5. Cornell, R.M., Schwertmann, U., (2003), Introduction to the Iron Oxides, in The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG.
6. Cunha, C., Panseri, S., Iannazzo, D., Piperno, A., Pistone, A., Fazio, M., Galvagno, S., Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications, Nanotechnology, 23 (2012)   465102. 
7. Dash, S., Murthy, P.N., Nath, L., Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems, Acta Pol Pharm, 67(3) (2010)  217-223. 
8. Dutta, R.K., Sahu, S., Development of oxaliplatin encapsulated in magnetic nanocarriers of pectin as a potential targeted drug delivery for cancer therapy, Results in Pharma Sciences, 2 (2012) 38-45.
9. Farghali, M.A., El-Din, T.A.S., Al-Enizi, A.M., El Bahnasawy, R.M., Graphene/magnetite nanocomposite for potential environmental application, International Journal of Electrochemical Science, 10 (2015) 529-537. 
10. Gu, W., Deng, X., Gu, X., Jia, X., Lou, B., Zhang, X., Wang, E., Stabilized, superparamagnetic functionalized graphene/ Fe3O4 @ Au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application, Analytical chemistry, 87(3) (2015)  1876-1881. 
11. He, F., Fan, J., Ma, D., Zhang, L., Leung, C., Chan, H. L., The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding, Carbon, 48(11) (2010)  3139-3144. 
12. Li, D., Mueller, M.B., Gilje, S., Kaner, R.B., Wallace, G. G., Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology, 3(2) (2008) 101-105. 
13. Mascolo, M.C., Pei, Y., Ring, T.A., Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases, Materials, 6(12) (2013) 5549-5567. 
14. Moradi, S., Akhavan, O., Tayyebi, A., Rahighi, R., Mohammadzadeh, M., Rad, H.S. Magnetite/dextran-functionalized graphene oxide nanosheets for in vivo positive contrast magnetic resonance imaging, RSC Advances, 5(59) (2015)  47529-47537. 
15. Oh, W.-C., Chen, M.-L., Zhang, K., Zhang, F.-J., Jang, W.-K., The effect of thermal and ultrasonic treatment on the formation of graphene-oxide nanosheets, Journal of the Korean Physical Society, 56(4) (2010)  1097-1102. 
16. Ozkaya, T., Toprak, M. S., Baykal, A., Kavas, H., Köseoğlu, Y., Aktaş, B., Synthesis of Fe3O4 nanoparticles at 100 C and its magnetic characterization, Journal of Alloys and Compounds, 472(1) (2009) 18-23. 
17. Peppas, N.A., Korsmeyer, R., Dynamically swelling hydrogels in controlled release applications, Hydrogels in Medicine and Pharmacy, 3 (1987) 109-136. 
18. Prabhu, Y., Rao, K. V., Kumari, B. S., Kumar, V.S.S., Pavani, T., Synthesis of Fe3O4 nanoparticles and its antibacterial application, International Nano Letters, 5(2) (2015)  85-92. 
19. Rajput, S., Pittman, C.U., Mohan, D., Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb 2+) and chromium (Cr 6+) removal from water, Journal of Colloid and Interface Science, 468 (2016)  334-346. 
20. Shagholani, H., Ghoreishi, S. M., Mousazadeh, M., Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application, International Journal of Biological Macromolecules, 78 (2015) 130-136. 
21. Siegel, R.L., Miller, K.D., Jemal, A., Cancer statistics, CA: A Cancer Journal for clinicians, 66(1) (2016),  7-30. 
22. Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., Dai, H., Nano-graphene oxide for cellular imaging and drug delivery, Nano Research, 1(3) (2008) 203-212. 
23. Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet Tieulent, J., Jemal, A., Global cancer statistics, CA: a Cancer Journal for Clinicians, 65(2) (2015) 87-108. 
24. Wang, X., Wang, C., Qu, K., Song, Y., Ren, J., Miyoshi, D., Qu, X., Ultrasensitive and Selective Detection of a Prognostic Indicator in Early Stage Cancer Using Graphene Oxide and Carbon Nanotubes, Advanced Functional Materials, 20(22) (2010) 3967-3971. 
25. Xie, J., (2009) Synthesis, modification, and bioapplications of magnetic nanoparticles. BROWN UNIVERSITY.   
26. Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y., & Chen, Y., Superparamagnetic graphene oxide– Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, Journal of Materials Chemistry, 19(18) (2009)  2710-2714. 
27. Yao, T., Wang, H., Zuo, Q., Wu, J., Zhang, X., Cui, F., Cui, T., One Step Preparation of Reduced Graphene Oxide/Pd–Fe3O4@ Polypyrrole Composites and Their Application in Catalysis, Chemistry–An Asian Journal, 10(9) (2015)  1940-1947.