نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 پژوهشگاه مواد و انرژی، پژوهشکده نانوفناوری و مواد پیشرفته، گروه مواد زیستی، کرج، ایران

2 پژوهشگاه پلیمر و پتروشیمی ایران، دپارتمان کامپوزیت، تهران، ایران

چکیده

در این مقاله، تاثیر آمیختن و افزودن مقادیر اندک از نانوذرات شیشه زیست فعال در رفتار مکانیکی دینامیکی آمیخته های PDLLA/PCL بررسی شده اند. مدول ذخیره PDLLA خالص با افزایش فاز الاستومر PCL تا 30% وزنی از GPa 73/1 به حدود GPa 77/0 کاهش یافته و در مقابل مدول ذخیره آمیخته PDLLA/PCL با افزودن فاز پرکننده شیشه تا 6% وزنی از GPa 062/1 به حدود GPa 66/1 افزایش یافته است. همچنین بیشینه پیک tan δ در محدوده ی فاز زمینه PDLLA با افزودن فاز PCL کاهش یافته و مقدار آن 78/2 به 84/1 برای آمیخته حاوی 30% وزنی PCL رسیده است. این است احتمالا به این دلیل که فاز PCL در هر صورت به دلیل تحرک بالای زنجیره های آن مقدار دمپینگ خیلی کمی را از خود نشان می دهد. در مقابل شدت پیک انتقال شیشه برای آمیخته های PDLLA/PCL با افزایش نانوذرات BGn به عنوان نانوپرکننده افزایش می یابد که این مطلب کاملا قابل انتظار است. دلیل آن تغییرات در تحرک زنجیره های پلیمرهاست. مقادیر Tg بدست آمده از هر دو منحنی E" و tan δ با دما نشان می دهد که با افزودن فاز الاستومر PCL به فاز زمینه PDLLA در آمیخته ها و نیز در نمونه های نانوکامپوزیتی با افزایش فاز شیشه زیست فعال مقادیر Tg برای فاز زمینه PDLLA دچار کاهش شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Dynamic Mechanical Properties of PDLLA/PCL Blends and their Nanocomposites with Bioactive Glass as Nanofiller

نویسندگان [English]

  • Javad Esmaeilzadeh 1
  • Saeed Hesaraki 1
  • Mohammad Mehdi Hadavi 1
  • Masoud Esfandeh 2

1 Materials and Energy Research Center, Nanotechnology and Advanced Materials Department, Biomaterials group, Karaj, Iran

2 Polymer and Petrochemical Institute, Composite Department, Iran, Tehran, Iran

چکیده [English]

In this paper, the effect of blending and the addition of small amount of bioactive glass nanoparticles (BGn) on the dynamic mechanical behavior were investigated. While the storage modulus of neat PDLLA was decreased from 1.73 GPa to 0.77 GPa with addition of PCL phases, the storage modulus of PDLLA/PCL blends was increased from 1.062 GPa up to 1.66 Gpa with the addition of BGn from 1 wt% to 6 wt%. The intensities of the glass transition peak for PDLLA in the blends decreased 2.78 to 1.84 with the addition of elastomeric PCL phase up to 30 wt%. This is probably because PCL anyway shows extremely low damping as result of its fairly high chain mobility. The intensities of the glass transition peak for PDLLA/PCL blends increases with addition of BGn as nanofiller which were expected because of changes in the polymer chain mobility. The glass transition obtained from E" and tan δ curves indicated that Tg of the PDLLA with addition of BGn in the nanocomposites as well as addition of PCL in the blends was diminished.

کلیدواژه‌ها [English]

  • Neat PDLLA
  • PDLLA/PCL blend
  • PDLLA/PCL/BGn nanocomposites
  • Dynamic mechanical properties
1. Tuba, F., Olah, L., Nagy, P., Charactrization of reactively compatibilized poly (d,llactide) / polycaprolactone biodegradable blends by essential work of fracture method, Engineering Fracture Mechanics, 78 (2011) 3123–3133.
2. Chrissafis, K., Antoniadis, G., Paraskevopoulos, K.M., Vassiliou, A., Bikiaris, D.N., Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly (ϵ-caprolactone) nanocomposites, Composites Science and Technology, 67 (2007) 2165–2174.
3. Patrício, T., Bártolo, P., Thermal stability of PCL/PLA blends produced by physical blending process, Procedia Engineering, 59 (2013) 292–297.
4. Gregorova, A., Machovsky, M., Wimmer, R.,Viscoelastic properties of mineral filled poly (lactic acid) composites, International Journal of Polymer Science , 2012 (2012) 1-6.
5. Chartoff, R.P., Menczel, J.D., Dillman, S.H., Dynamic mechanical analysis (DMA), in: J.D. Menczel, R.B. Prime (Eds.), Thermal Analysis of Polymers—Fundamentals and Applications, John Wily & Sons, New Jersey, 2009.
6. Hrabalova, M., Gregorova, A., Wimmer, R., Sedlarik, V., Machovsky, M., Mundigler, N., Effect of wood flour loading and thermal annealing on viscoelastic properties of poly(lactic acid) composite films, Journal of Applied Polymer Science, 118 (2010)1534–1540.
7. Gregorova, A., Hrabalova, M., Kovalcik, R., Wimmer, R., Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites, Polymer Engineering & Science, 51 (2011) 143–150.
8. Faulstich de Paiva, J. M., Frollini, E., Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: Thermal analyses of fibers and compositesMacromolecular Materials and Engineering, 291 (2006) 405–417.
9. Si, M., Araki, T., Ade, H., Kilcoyne, A.L.D., Fisher, R., Skolov, J.C., Rafailovich, M.H., Compatibilizing bulk polymer blends by using organoclays, Macromolecules, 39 (2006) 4793–4801.
10. Elias, L., Fenouillot, F., Majeste, J.C., Cassagnau, P., Morphology and rheology of immiscible polymer blends filled with silica nanoparticles, Polymer, 48 (2007) 6029–6040.
11. Laredo, E., Grimau, M., Bello, A., Wu, D.F., Zhang, Y.S., Lin, D.P., AC conductivity of selectively located carbon nanotubes in poly(ϵ-caprolactone)/polylactide blend nanocomposites, Biomacromolecules, 11 (2010) 1339–1347.
12. Cabedo, L., Feijoo, J.L., Villanueva, M.P., Lagarón, J.M., Giménez, E., Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications, Macromolecular Symposia, 233 (2006) 191–197.
13. Jain, S., Reddy, M.M., Mohanty, A.K., Misra, M., Ghosh, A.K., A new biodegradable flexible composite sheet from poly(lactic acid)/poly(e-caprolactone) blends and micro-talc, Macromolecular Materials and Engineering , 295 (2010) 750–762.
14. Amirian, M., Chakoli, A.N., Cai, W., Sui, J.H., In vitro degradation of poly (L-lactide)/ poly(ϵ-caprolactone) blend reinforced with MWCNTs, Iranian Polymer Journal, 21 (2012) 165–174.
15. Eng, C.C., Ibrahim, N.A., Zainuddin, N., Ariffin, H., Yunus, W.M.Z.W., Then, Y.Y., Teh, C.C., Enhancement of mechanical and thermal properties of polylactic acid/ polycaprolactone blends by hydrophilic nanoclay, Indian Journal of Materials Science , 2013 (2013) 1-11.
16. Nanda, M.R., Misra, M., Mohanty, A.K., The effect of process engineering on the performance of PLA and PHBV blends, Macromolecular Materials and Engineering, 296 (2011) 719–728.
17. Wu, D., Zhang, Y., Zhang, M., Yu, W., Selective localization of multiwalled carbon nanotubes in poly (e-caprolactone) / polylactide blend, Biomacromolecules, 10 (2009) 417–424.
18. Esmaeilzadeh, J., Hesaraki, S., Hadavi, S.M.M., Esfandeh, M., Ebrahimzadeh, M.H., Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique, Materials Science and Engineering C, 71 (2017) 807-819.
19. Chen, C.C., Chueha, J.Y., Tseng, H., Huang, H.M., Lee, S.Y., Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials, 24 (2003) 1167–1173.
20. Takayama, T., Todo, M., Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition, Journal of Materials Science, 41 (2006) 4989–4992.