نویسندگان

1 پژوهشگاه مواد و انرژی، پژوهشکده نیمه هادیها، کرج، ایران.

2 پژوهشگاه مواد و انرژی، پژوهشکده نیمه هادی ها، کرج، ایران.

3 پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران.

چکیده

در این تحقیق روشی جدید و آسان برای ساخت آرایه‌ای از نانو صفحات گرافن اکسید کاهش یافته بر روی فوم نیکل متخلخل سه بعدی ارائه گردید. یک صفحه گرافن با لبه‌های تیز و چین‌خورده بر روی فوم نیکل به روش الکتروفورتیک به‌دست آمد. الکترودهای ساخته شده با استفاده از میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) مشخصه یابی گردیدند. صفحات گرافنی بر روی فوم نیکل در دماهای 300،600 و 900 درجه سانتی‌گراد تحت گاز آرگون به مدت 4 ساعت بازپخت شدند. فعالیت الکتروشیمیایی ابرخازنی الکترودهای ساخته شده با استفاده از اندازه‌گیری پرشدن- تخلیه و ولتامتری چرخه‌ای اندازه‌گیری شد. برای گرافن اکسید بازپخت شده در دمای 900 درجه سانتی‌گراد ظرفیت ویژه بالای F/g148 در نرخ روبشی mV/s5 به‌دست آمد که از ظرفیت ویژه گرافن اکسید بازپخت شده در 600 درجه سانتی‌گراد (F/g115)، گرافن اکسید بازپخت شده در 300 درجه سانتی‌گراد (F/g72) و گرافن اکسید (F/g52) بیشتر است. ابرخازن گرافن اکسید بازپخت شده در 900 درجه سانتی‌گراد، یک پایداری چرخه‌ای طولانی همراه با 1/96% ظرفیت باقی‌مانده پس از 200 چرخه را از خود نشان داد.

کلیدواژه‌ها

عنوان مقاله [English]

Deposition of Graphene Oxide Using Electrophoretic Method and Heat Treatment Temperature Effect on the Character of the Supercapacitor

نویسندگان [English]

  • Saeid Borhani 1
  • Morteza Moradi Alborzi 2
  • Mohammad Ali Kiani 3

1 Materials and Energy Research Center, Department of Semiconductors, Karaj, Iran.

2 Materials and Energy Research Center, Department of Semiconductors, Karaj, Iran.

3 Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran.

چکیده [English]

In this research, We reported a novel and facile approach to fabricate rGO nanosheet arrays on 3D porous nickel foam. A graphene layer with the sharp edges and wrinkles was obtained on nickel foam by an electrophoretic deposition (EPD).The fabricated electrodes were characterized using scanning electron microscope(FE-SEM).The GO sheets on the nickel foam was annealed at 300 ̊C, 600 ̊C and 900 ̊C for 4 h under flow of Ar. The electrochemical activities of supercapacitors were assessed using cyclic voltammetry (CV) and charge-discharge measurements. A maximum specific capacitance of the Go annealed at 900 ̊C can reach up to 148Fg-1 at a scan rate of 5mVs-1, which is higher than Go annealed at 600 ̊C (115Fg-1), Go annealed at 300 ̊C (72Fg-1) and Go (52Fg-1). The supercapacitor based on a GO with 900 ͦC of annealing temperature showed long cycling stability with 96.1% of capacitance retention after 200 cycles.

کلیدواژه‌ها [English]

  • Supercapacitor
  • Graphene Oxide
  • Electrophoretic Deposition
  • Electrochemical Capacitance
  • Heat treatment
  1. Linden, D. , Reddy, T.B., Handbook of batteries, New York, (2002).
  2. Winter, M., Brodd, R.J. , What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev., 104 (2004) 4245-4270.
  3. Kötz, R., Carlen, M., Principles and applications of electrochemical capacitors, Electrochim. Acta, 45 (2000) 2483-2498.
  4. Nuintek, Comparison of capacitor, supercapacitorand battery (2004), http://www.nuin.co.kr.
  5. Pell, W.G., Conway, B.E., Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes, J. Power Sources, 136 (2004) 334-345.
  6. Xu Hui a, Luming Qian a, Gary Harris b, Tongxin Wang b,c, Jianfei Che a,b, Fast fabrication of NiO@graphene composites for supercapacitor,electrodes: Combination of reduction and deposition, J. Materials and Design.
  7. Makino, S., Yamauchi, Y., Sugimoto, W., Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors, J. Power Sources, 227 (2013) 153-160.
  8. CHu, C.C., Chang, K.H., Lin, M.C., Wu, Y.T. , Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett., 6 (2006) 2690-2695.
  9. Lee, J.W., Hall, A.S. , Kim, J.-D. , Mallouk, T.E. , A Facile and Template-Free Hydrothermal Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability, Chem. Mater., 24 (2012) 1158-1164.
  10. Kim, Y.-H. , Park, S.-J. , Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes, Curr. Appl. Phys., 11 (2011) 462-466.
  11. Pan, X. , Zhao, Y. , Ren, G. , Fan, Z., Highly conductive VO2 treated with hydrogen for supercapacitors, Chem. Commun., 49 (2013) 3943-3945.
  12. Lu, Q., Lattanzi, M.W. , Chen, Y. , Kou, X., Li, W., Fan, X., Unruh, K.M. , Chen, J.G. , Xiao, J.Q. , Supercapacitor Electrodes with High-Energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites, Angew. Chem. Int. Ed., 50 (2011) 6847-6850.
  13. Kang, J. , Hirata, A., Kang, L., Zhang, X., Hou, Y., Chen, L., Li, C., Fujita, T., Akagi, K., Chen, M., Enhanced Supercapacitor Performance of MnO2 by Atomic Doping, Angew. Chem. Int. Ed., 52 (2013) 1664-1667.
  14. Zhuo, L., Wu, Y., Ming, J., Wang, L., Yu, Y., Zhang, X., Zhao, F., Facile synthesis of a Co3O4-carbon nanotube composite and its superior performance as an anode material for Li-ion batteries, J. Mater. Chem. A, 1 (2013) 1141-1147.
  15. Dong, X.-C. , Xu, H., Wang, X.-W. , Huang, Y.-X. , Chan-Park, M.B. , Zhang, H., Wang, L.-H. , Huang, W., Chen, P., 3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection, ACS Nano, 6 (2012) 3206-3213.
  16. Zhang, X., Shi, W., Zhu, J., Kharistal, D.J. , Zhao, W., Lalia, B.S. , Hng, H.H. , Yan, Q., High-Power and High-Energy-Density Flexible Pseudocapacitor Electrodes Made from Porous CuO Nanobelts and Single-Walled Carbon Nanotubes, ACS Nano, 5 (2011) 2013-2019.
  17. Huang, H., Liu, Y., Wang, J., Gao, M., Peng, X., Ye, Z., Self-assembly of mesoporous CuO nanosheets-CNT 3D-network composites for lithium-ion batteries, Nanoscale, 5 (2013) 1785-1788.
  18. Xiang, J.Y. , Tu, J.P. , Zhang, L., Zhou, Y., Wang, X.L. , Shi, S.J. , Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries, J. Power Sources, 195 (2010) 313-319.
  19. Wang, B., Wu, X.-L. , Shu, C.-Y. , Guo, Y.-G. , Wang, C.-R. , Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries, J. Mater. Chem., 20 (2010) 10661-10664.
  20. Zhou, J. , Ma, L. , Song, H. , Wu, B. , Chen, X. , Durable high-rate performance of CuO hollow nanoparticles/graphene-nanosheet composite anode material for lithium-ion batteries, Electrochem. Commun., 13 (2011) 1357-1360.
  21. Dubal, D.P. , Gund, G.S. , Lokhande, C.D. , Holze, R. , CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition, Mater. Res. Bull., 48 (2013) 923–928.
  22. Stoller, M.D. , Park, S. , Zhu, Y. , An, J. , Ruoff, R.S. , Graphene-Based Ultracapacitors, Nano Lett., 8 (2008) 3498-3502.
  23. Hummers Jr, W.S. , Offeman, R.E. , Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339.
  24. Fakhri, A., Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: Kinetics, thermodynamics and mechanism studies. Journal of Saudi Chemical Society, 2013.
  25. Pendashteh, Afshin , Moosavifard, Seyyed Ebrahim , Rahmanifar, Mohammad S. , Highly Ordered Mesoporous CuCo2O4 Nanowires, a Promising Solution for High-Performance Supercapacitors, Chemistry of Materials. 
  26. Lee, J.W. , Hall, A.S. , Kim, J.-D. , Mallouk, T.E. , A Facile and Template-Free Hydrothermal Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability, Chem. Mater., 24 (2012) 1158-1164. 
  27. Mai, Y.J. , Wang, X.L. , Xiang, J.Y. , Qiao, Y.Q. , Zhang, D. , Gu, C.D. , Tu, J.P. , CuO/graphene composite as anode materials for lithium-ion batteries, Electrochim. Acta, 56 (2011) 2306-2311. 
  28. Hu, C. C. , Tsou, T. W. , Commun. 2002, 4, 105.