نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 استاد، مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 استادیار، مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 محقق، مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران

10.30501/jamt.2024.419852.1290

چکیده

هدف از این پژوهش ارزیابی ساختار ریختگی و همگن‌شده آلیاژ آنتروپی بالای Al10Co25Cr8Fe15Ni36Ti6 است. در این پژوهش، ریزساختار آلیاژ پس از ریخته‌گری در کورهٔ ذوب القایی تحت خلأ و کورهٔ ذوب مجدد قوسی و همچنین پس از همگن‌‌سازی در دمای 1220 درجهٔ سلسیوس به‌مدت 17 ساعت بررسی شده است. ریزساختار نمونه‌ها توسط میکروسکوپ نوری، میکروسکوپ الکترونی روبشی و پراش پرتو ایکس ارزیابی شد. براساس محاسبات، مقدار آنتروپی اختلاط آلیاژ kJ/mol ۰۵/13 ، 8/8 = δ و 97/7 = VEC است که پیش‌بینی می‌شود ساختار این آلیاژ شامل فازهای محلول جامد FCC و BCC و فازهای میانی باشد. در حالت ریختگی، ساختار در نواحی دندریتی متشکل از زمینه γ و رسوبات γʹ و نواحی بین‌دندریتی شامل رسوبات γʹ و فاز NiAl است. پس از انجام عملیات حرارتی همگن‌سازی، دندریت‌ها تا حدی حذف شده‌اند و از پیوستگی آن‌ها کاسته شده است که این مسئله به‌معنای یکنواخت‌تر شدن توزیع عناصر است. همچنین، پس از همگن‌سازی، فاز NiAl نیز از ساختار حذف شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Microstructural Investigation of The Cast and Homogenized Al10Co25Cr8Fe15Ni36Ti6 High Entropy Alloy

نویسندگان [English]

  • Seyed Mahdi Abbasi 1
  • Masumeh Seifollahi 2
  • Ebrahim Yousefi 3

1 Professor, Faculty of Materials & Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran.

2 Assistant Professor, Faculty of Materials & Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran.

3 Researcher, Faculty of Materials & Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran.

چکیده [English]

The as-cast and homogenized microstructures of Al10Co25Cr8Fe15Ni36Ti6 high entropy alloy were investigated in this study. To this end, the high entropy alloy was produced using vacuum induction melting and electro slag remelting processes, and the ESRed block was homogenized at the temperature of 1220 °C for 17 hr. The as-cast, as ESRed and homogenized microstructures were then investigated using optical microscopy, scanning electron microscopy, and X-ray diffraction. On the basis of theoretical measurements, the mixing entropy, atomic size differences, and Valence electron concentration were obtained as 13.05 kJ/mol, 8.8, and 7.97, respectively. These values can predict the formation of a solid solution matrix as the type of BCC + FCC and intermetallic phases. The as-cast microstructure included γ+ γʹ in the dendritic zones and γʹ+ NiAl in the interdendritic areas. After homogenization, the dendritic structures were almost eliminated, and they became discontinuous which is an indication of elements distribution homogenization. NiAl phase was also omitted after the homogenization process.

کلیدواژه‌ها [English]

  • High Entropy Alloys
  • Al10Co25Cr8Fe15Ni36Ti6
  • Microstructure
  • Homogenization
  1.  Asgarkhani, N., Seifollahi, M., & Abbasi, S. M. (2023). Effect of aging treatment on the microstructure and mechanical properties of Al0.7CoCrFeNi high entropy alloy. International Journal of Engineering, 36(6), 1060-1065. https://doi.org/5829/IJE.2023.36.06C.04
  2. Brooks, C. R. (1984). Heat treatment, structure, and properties of nonferrous alloys. Metals Park: American Society Metals,.ISBN: ‎ 978-0871701381
  3. Daoud, H., Manzoni, A. M., Wanderka, N., & Glatzel, U. (2015). High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). Journal of Materials, 67(10), 2271-2277. https://doi.org/ 1007/s11837-015-1484-7
  4. Durand-Charre, M. (2017). The microstructure of superalloys. https://doi.org/10.1201/9780203736388
  5. Ghaderi, A., Moghani Algholandis, H., & Soltanalinezhad, M. (2019). Effect of annealing an microstructure and hardness of l0.5CoCrFeNi high entropy alloy. 8th imat. Tehran: civilika. IMES13_387
  6. Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of FCC or bcc phase in high entropy alloys. Journal of Applied Physics, 109(10), 221-230. https://doi.org/ 10.1063/1.3587228
  7. Guo, Q., Xu, X., Pei, X., Duan, Z., Liaw, P. K., Hou, H., & Zhao, Y. (2023). Predict the phase formation of high-entropy alloys by compositions. Journal of Materials Research and Technology, 22, 3331-3339. https://doi.org/10.1016/j.jmrt.2022.12.143
  8. Huo, W. Y., Shi, H. F., Ren, X., & Zhang, J. Y. (2015). Microstructure and wear behavior of CoCrFeMnNbNi high-entropy alloy coating by TIG cladding. Advances in Materials Science and Engineering, 2015, 178-186. https://doi.org/10.1155/2015/647351
  9. Jiang, L., Lu, Y., Dong, Y., Wang, T., Cao, Z., & Li, T. (2014). Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0. 5 alloy casting ingot. Intermetallics, 44, 37-43. https://doi.org/10.1016/j.intermet.2013.08.016
  10. Ma, L., Wan, J., Lai, Z., Wu, Z., Yang, B., & Zhao, P. (2023). Microstructure and mechanical property of Al56-xCo24Cr20Nix eutectic high-entropy alloys with an ordered FCC/BCT phase structure. Journal of Alloys and Compounds, 936, 168-194. https://doi.org/10.1016/j.jallcom.2022.168194
  11. Manzoni, A. M., Haas, S., Yu, J. M., Daoud, H. M., Glatzel, U., Aboulfadl, H., ... & Wanderka, N. (2019). Evolution of γ/γ' phases, their misfit and volume fractions in Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy. Materials Characterization, 154, 363-376. https://doi.org/10.1016/j.matchar.2019.06.009
  12. Manzoni, A. M., & Glatzel, U. (2019). New multiphase compositionally complex alloys driven by the high entropy alloy approach. Materials Characterization, 147, 512-532. https://doi.org/10.1016/j.matchar.2018.06.036
  13. Mitchell, R. J., Preuss, M., Tin, S., & Hardy, M. C. (2008). The influence of cooling rate from temperatures above the γ′ solvus on morphology, mismatch and hardness in advanced polycrystalline nickel-base superalloys. Materials Science and Engineering A, 473(1-2), 158-165. https://doi.org/10.1016/j.msea.2007.04.098
  14. Munitz, A., Salhov, S., Hayun, S., & Frage, N. (2016). Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 683, 221-230. https://doi.org/10.1016/j.jallcom.2016.05.034
  15. Shen, Q., Huang, D., Li, F., Liu, M., & Wang, X. (2023). Microstructures and mechanical properties of the precipitation strengthened Al0.4Cr0.7FexNi2V0.2 high entropy alloys. Materials Science and Engineering A, 864, 144606. https://doi.org/ 10.1016/j.msea.2023.144606
  16. Shi, Y., Collins, L., Feng, R., Zhang, C., Balke, N., Liaw, P. K., & Yang, B. (2018). Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corrosion Science, 133, 120-131. https://doi.org/10.1016/j.corsci.2018.01.030
  17. Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., & Zhang, W. (2014). High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. Journal of Materials, 66(10), 1984-1992. https://doi.org/10.1007/s11837-014-1085-x
  18. Yuan, J., Zhang, H., Wang, Z., Han, P., & Qiao, J. (2023). Contribution of coherent precipitates on mechanical properties of CoCrFeNiTi0.2 high-entropy alloy at room and cryogenic temperatures. Intermetallics, 154, 107-820. https://doi.org/10.1016/j.intermet.2022.107820
  19. Zeng, X., Li, F., Zhou, X., Yan, W., Li, J., Yang, D., ... & Liu, M. (2023). The phase stability at intermediate-temperature and mechanical behavior of the dual-phase AlCoCr0.5FexNi2.5 high entropy alloys. Materials Chemistry and Physics, 297, 127314. https://doi.org/10.1016/j.matchemphys.2023.127314
  20. Zhang, K., & Fu, Z. (2012). Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics, 36(6), 24-32. https://doi.org/ 10.1016/j.intermet.2011.10.010
  21. Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93. https://doi.org/10.1016/j.pmatsci.2013.10.001