نوع مقاله : مقاله کامل پژوهشی

نویسنده

بخش مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران، تهران، ایران

چکیده

در این تحقیق، لایه نازک تیتانات سرب (PTO)، با ضخامت nm 150، با استفاده از روش رسوب­ گذاری از فاز مایع، روی زیر­لایه تک ­بلور تیتانات استرانسیم آلائیده شده با Nb با جهت بلوری [001]، رشد داده شده است. نتایج پراش پرتو ایکس با قدرت تفکیک بالا (HR-XRD)، نشان داد که لایه PTO، در جهت  [001]، رشد یافته است. لایه نازک، زیر­لایه، تقارن درجه چهار لایه نازک و زیر­لایه، به ­وسیله روبش زاویه ф، به اندازه 360 درجه، حول صفحات {102}، تأیید شد؛ بنابراین، لایه، به­ طور کامل، در جهت بلوری c، رشد یافته است. نقشه فضایی وارون حول صفحه (103) لایه و زیرلایه، نشان داد که لایه نازک، تحت کرنش فشاری صفحه ­ای است. ثوابت شبکه ­ای محاسبه­ شده لایه PTO از موقعیت قله ­ها در محورهای عمودی و افقی، به میزان nm 403/0a= و nm 407/0c= است. این تنش فشاری، به ­دلیل تشکیل فصل مشترک همدوس در فصل مشترک لایه و زیر­لایه و عدم انطباق ثوابت شبکه لایه و زیر­لایه، ایجاد شده است. مطالعات توپوگرافی AFM، نشان داد که لایه نازک، از دانه ­های کشیده­ ای تشکیل شده است که در جهت­ های  [001] و [010]، رشد کرده ­اند. پیکربندی حوزه ­های فروالکتریک با میکروسکوپ نیروی پیزوالکتریکی (PFM)، مطالعه شد. نتایج، نشان داد که لایه، از حوزه­ های فروالکتریک، با مرز زاویه 180 و 90 درجه، تشکیل شده است. تشکیل حوزه­ های فروالکتریک با مرز زاویه 90 درجه، در اثر کرنش فشاری ایجاد شده در لایه، به دلیل عدم انطباق ثوابت شبکه لایه و زیر­لایه است. در واقع، حوزه­ های فروالکتریکی با مرز 90 درجه، جهت کاهش انرژی الاستیک لایه، تشکیل شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of Microstructure and Ferroelectric Domain of Epitaxial PbTiO3 Thin Film Grown by Liquid Phase Deposition

نویسنده [English]

  • Amin Yourdkhani

Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Tehran, Iran

چکیده [English]

In this research, PbTiO3 (PTO) thin films with 150 nm thickness were grown on (001) Nb-doped SrTiO3 substrate. High-resolution X-ray diffraction (HR-XRD) studies showed that the PTO films are epitaxial with [001] orientation. The ф-scan of the film and substrate around {102} revealed a fourfold symmetry for both demonstrating [001] perfect orientation of the films. XRD reciprocal space map around (103) of the film and substrate revealed that film is fully strained with a compressive strain. The lattice constants calculated from the horizontal and vertical peak positions are; a = 0.403 nm and c = 0.407 nm. This compressive strain was developed due to the coherent interface formation in the film and substrate interface and the lattice parameter mismatch of the film with respect to the substrate. Topography studies by atomic force microscopy (AFM) showed that films are highly uniform with densely packed elongated grains developed along the [100] and [010] orientations. Ferroelectric domain configuration of the film was investigated by a piezoelectric force microscope (PFM). Two types of 180 and 90 degrees ferroelectric domains were observed. The epitaxial compressive strain is responsible for the formation of 90 degree domains. The developed strain via the lattice mismatch between the PTO layer and the substrate enforces electrical dipoles to rotate away from the normal direction to compensate the elastic energy of the film.

کلیدواژه‌ها [English]

  • Thin films
  • Lead Titanate
  • Epitaxial growth
  • Ferroelectric Domains
1.   Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N. Y., Stephenson, G. B., Stolitchnov, I., Taganstev, A. K., Taylor, D. V., Yamada, T., Streiffer, S., "Ferroelectric thin films: Review of materials, properties, and applications", Journal of Applied Physics, Vol. 100, No. 5, 051606, (2006), 1-46. https://doi.org/10.1063/1.2336999
2.   Dragan, D., "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics", Reports on Progress in Physics, Vol. 61, No. 9, (1998), 1267-1324. https://doi.org/10.1088/0034-4885/61/9/002
3.   Buchanan, R. C., Huang, J., "Pyroelectric and sensor properties of ferroelectric thin films for energy conversion", Journal of the European Ceramic Society, Vol. 19, No. 6, (1999), 1467-1471. http://dx.doi.org/10.1016/S0955-2219(98)00454-3
4.   Polla, D. L., Ye, C., Schiller, P., Tamagawa, T., Robbins, W. P., Glumac, D., Hsueh, C. C., Applications of PZT and Related Thin Films in Piezoelectric Microsensors, MRS Proceedings, Boston, (2011). https://doi.org/10.1557/PROC-243-55
5.   Liu, N., Yang, J., Chen, W., "Thin-film piezoelectric actuators of nonuniform thickness and nonhomogeneous material properties for modulating actuation stress", Mechanics of Advanced Materials and Structures, Vol. 22, No. 10, (2015), 803-812. https://doi.org/10.1080/15376494.2013.864431
6.   Oldham, K., Pulskamp, J., Polcawich, R., Ranade, P., Dubey, M., "Thin-film piezoelectric actuators for bio-inspired micro-robotic applications", Integrated Ferroelectrics, Vol. 95, No. 1, (2007), 54-65. https://doi.org/10.1080/10584580701756482
7.             Kanda, K., Inoue, J., Saito, T., Fujita, T., Higuchi, K., Maenaka, K., "Fabrication and characterization of double-layer Pb(Zr,Ti)O3 thin films for micro-electromechanical systems", Japanese Journal of Applied Physics, Vol. 51, No. 1, 09LD12, (2012), 1-5. https://doi.org/10.1143/JJAP.51.09LD12
8.   Yuya, I., Jing, Z., Norio, T., Tsuyoshi, O., Kan, O., "Characteristic analysis of diaphragm-type transducer that is thick relative to itssize", Japanese Journal of Applied Physics, Vol. 56, No. 7S1, 07JD11, (2017), 1-8. https://doi.org/10.7567/.56.07JD11
9.   Kijima, T., Aoyama, T., Miyazawa, H., Hamada, Y., Ohashi, K., Nakayama, M., Furuya, N., Matsumoto, A., Natori, E., Tanaka, K., Shimoda, T., "Ferroelectric random access memory using Pb(Zr,Ti,Nb)O3 films", Proceedings of 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, Nara-City, (2007). https://doi.org/10.1109/ISAF.2007.4393155
10. Takayama, R., Tomita, Y., Iijima, K., Ueda, I., "Pyroelectric properties and application to infrared sensors of PbTiO3, PbLaTiO3 and PbZrTiO3 ferroelectric thin films", Ferroelectrics, Vol. 118, No. 1, (1991), 325-342. https://doi.org/10.1080/00150199108014770
11. Zeng, X., Qin, F., Yao, X., Xu, N., Xu, S., "A systematic study on the growth of PZNT films by LPE method", Journal of Materials Science, Vol. 41, No. 13, (2006), 4267-4272. https://doi.org/10.1007/s10853-005-5473-z
12. Matsubara, S., Miura, S., Miyasaka, Y., Shohata, N., "Preparation of epitaxial ABO3 perovskite‐type oxide thin films on a (100)MgAl2O4/Si substrate", Journal of Applied Physics, Vol. 66, No. 12, (1989), 5826-5832. https://doi.org/10.1063/1.343654
13. McDaniel, M. D., Ngo, T. Q., Hu, S., Posadas, A., Demkov, A. A., Ekerdt, J. G., "Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors", Applied Physics Reviews, Vol. 2, No. 4, 041301, (2015), 1-32. https://doi.org/10.1063/1.4934574
14. Wang, Y., Ganpule, C., Liu, B. T., Li, H., Mori, K., Hill, B., Wuttig, M., Ramesh, R., Finder, J., Yu, Z., Droopad, R., Eisenbeiser, K., "Epitaxial ferroelectric Pb(Zr, Ti)O3 thin films on Si using SrTiO3 template layers", Applied Physics Letters, Vol. 80, No. 1, (2002), 97-99. https://doi.org/10.1063/1.1428413
15. Kushida, K., Takeuchi, H., "Epitaxial growth of PbTiO3 films on SrTiO3 by RF magnetron sputtering", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38, No. 6, (1991), 656-662. https://doi.org/10.1109/58.108866
16. Seiji, N., Tomohisa, U., Kentaro, D., Koh, S., Hironori, F., Osami, S., Yoshio, K., Nobuo, T., Masaru, S., "Strain evolution of epitaxial tetragonal-like BiFeO3 thin films on LaAlO3 (001) substrates prepared by sputtering and their bulk photovoltaic effect", Japanese Journal of Applied Physics, Vol. 55, No. 10, (2016), 1015011-1015019. https://doi.org/10.7567/JJAP.55.101501
17. Catalan, G., Lubk, A., Vlooswijk, A. H. G., Snoeck, E., Magen, C., Janssens, A., Rispens, G., Rijnders, G., Blank, D. H. A., Noheda, B., "Flexoelectric rotation of polarization in ferroelectric thin films", Nature Materials, Vol. 10, No. 12, (2011), 963-967. https://doi.org/10.1038/nmat3141
18. Yu, Y. H., Lai, M. O., Lu, L., "Distribution in orientation axis of thin film grown by pulsed laser deposition", Thin Solid Films, Vol. 516, No. 6, (2008), 907-911. https://doi.org/10.1016/j.tsf.2007.04.150
19. Chentir, M. -T., Utsugi, S., Fujisawa, T., Ehara, Y., Ishikawa, M., Morioka, H., Yamada, T., Matsushima, M., Funakubo, H., "Small-strain (100)/(001)-oriented epitaxial PbTiO3 films with film thickness ranging from nano- to micrometer order grown on (100)CaF2 substrates by metal organic chemical vapor deposition", Journal of Materials Research, Vol. 28, No. 5, (2013), 696-701. https://doi.org/10.1557/jmr.2012.441
20.  Liu, B., Sun, T., He, J., Dravid, V. P., "Sol−gel-derived epitaxial nanocomposite thin films with large sharp magnetoelectric effect", ACS Nano, Vol. 4, No. 11, (2010), 6836-6842. https://doi.org/10.1021/nn101952q
21q. Li, Z., Foster, C. M., Guo, D., Zhang, H., Bai, G. R., Baldo, P. M., Rehn, L. E., "Growth of high quality single‐domain single‐crystal films of PbTiO3", Applied Physics Letters, Vol. 65, No. 9, (1994), 1106-1108. https://doi.org/10.1063/1.112112
22. Matsubara, S., Shohata, N., Mikami, M., "Epitaxial growth of PbTiO3 on MgAl2O4/Si substrates", Japanese Journal of Applied Physics, Vol. 24, No. S3, (1985), 10-12. https://doi.org/10.7567/JJAPS.24S3.10
23. Borodavka, F., Gregora, I., Bartasyte, A., Margueron, S., Plausinaitiene, V., Abrutis, A., Hlinka, J., "Ferroelectric nanodomains in epitaxial PbTiO3 films grown on SmScO3 and TbScO3 substrates", Journal of Applied Physics, Vol. 113, No. 18, (2013), 187216 1-7. https://doi.org/10.1063/1.4801966
24. Deki, S., Aoi, Y., Okibe, J., Yanagimoto, H., Kajinami, A., Mizuhata, M., "Preparation andcharacterization of iron oxyhydroxide and iron oxide thin films by liquid-phase deposition", Journal of Materials Chemistry, Vol. 7, No. 9, (1997), 1769-1772. https://doi.org/10.1039/A700628D
25. Deki, S., Iizuka, S., Akamatsu, K., Mizuhata, M., Kajinami, A., "Novel fabrication method for Si1−xTixO2thin films with graded composition profiles by liquid phase deposition", Journal of Materials Chemistry, Vol. 11, No. 4, (2001), 984-986. https://doi.org/10.1039/B100615K
26. Deki, S., Hosokawa, A., Béléké, A. B., Mizuhata, M., "α-Ni(OH)2 thin films fabricated by liquid phase deposition method", Thin Solid Films, Vol. 517, No. 5, (2009), 1546-1554. https://doi.org/10.1016/j.tsf.2008.09.040
27. Yourdkhani, A., Caruntu, G., "Characterization of the microstructural and piezoelectric properties of PbTiO3 thin films synthesized by liquid-phase deposition", The Journal of Physical Chemistry C, Vol. 115, No. 30, (2011), 14797-14805. https://doi.org/10.1021/jp202127t
28. Yourdkhani, A., Perez, A. K., Lin, C., Caruntu, G., "Magnetoelectric perovskite-spinel bilayered nanocomposites synthesized by liquid-phase deposition", Chemistry of Materials, Vol. 22, No. 22, (2010), 6075-6084. https://doi.org/10.1021/cm1014866
29. Yourdkhani, A., Caruntu, D., Perez, A. K., Caruntu, G., "Liquid phase deposition of barium hexaferrite thin films", The Journal of Physical Chemistry C, Vol. 118, No. 4, (2014), 1774-1782. https://doi.org/10.1021/jp409634x
30. Yourdkhani, A., Caruntu, G., "Highly ordered transition metal ferrite nanotube arrays synthesized by template-assisted liquid phase deposition", Journal of Materials Chemistry, Vol. 21, No. 20, (2011), 7145-7153. https://doi.org/10.1039/C0JM04441E
31. Yourdkhani, A., Caruntu, D., Vopson, M., Caruntu, G., "1D core-shell magnetoelectric nanocomposites by template-assisted liquid phase deposition", CrystEngComm, Vol. 19, No. 15, (2017), 2079-2088. https://doi.org/10.1039/C7CE00101K
32. Peräntie, J., Stratulat, M. S., Hannu, J., Jantunen, H., Tyunina, M., "Enhancing polarization by electrode-controlled strain relaxation in PbTiO3 heterostructures", APL Materials, Vol. 4, No. 1, (2016), 0161041-0161046. https://doi.org/10.1063/1.4939790
33. Xu, R., Karthik, J., Damodaran, A. R., Martin, L. W., "Stationary domain wall contribution to enhanced ferroelectric susceptibility", Nature Communication, Vol. 5, No. 1, (2014), 3120-3127. https://doi.org/10.1038/ncomms4120
34. Andreev, N. V., Sviridova, T. A., Chichkov, V. I., Volodin, A. P., Van Haesendonck, C., Mukovskii, Y. M., "Crystal structure and surface morphology of magnetron sputtering deposited hexagonal and perovskite-like YbMnO3 thin films", Journal of Alloys and Compounds, Vol. 586, No. 1, (2014), S343-S347. https://doi.org/10.1016/j.jallcom.2013.03.156
35. Tilley, R. J. D., Perovskites: Structure-property relationships, Wiley, (2016). https://doi.org/10.1002/9781118935651