نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، قزوین، ایران

چکیده

این پژوهش، با هدف بررسی تأثیر حضور مس و منیزیم بر خواص ساختاری، زیستی و عملکرد ضد­باکتریایی شیشه­ های زیست­ فعال 58S انجام شده است. ارزیابی ساختاری و ریزساختاری سطح شیشه­ های سنتز شده به روش سل-ژل، با استفاده از آزمون ­های پراش اشعه XRD) X)، طیف­‌سنجی تبدیل فوریه مادون ‌قرمز (FTIR) و میکروسکوپ الکترونی روبشی (SEM) صورت گرفت. تأثیر ترکیب مس و منیزیم بر کیفیت و کمیت زیست ­فعالی برون­ تنی، به کمک آزمون­ های زولیم برماید (MTT) و آلکالین فسفاتاز (ALP) مورد بررسی قرار گرفت. عملکرد ضد­باکتریایی شیشه ­های زیست ­فعال حاوی مس و منیزیم در برابر باکتری MRSA، بررسی شد. نتایج، تشکیل لایه هیدروکسی آپاتایت را روی سطح شیشه­ ی زیست­فعال تأیید کرد. افزودن مس و منیزیم به ترکیب شیشه زیست ­فعال 58S، موجب افزایش فعالیت و تکثیر سلولی و بهبود عملکرد ضد­باکتریایی شد. نتایج حاکی از مقدار بهینه منیزیم و مس در ترکیب شیشه زیست­ فعال BG-5/5 (حاوی 5 درصد مولی از هر کدام از MgO و CuO) است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation the In Vitro and Bactericidal Properties of Magnesium and Copper Containing Bioactive Glasses

نویسندگان [English]

  • Amirhossein Moghanian
  • Mohammad Amin Zohour Fazeli

Department of Materials Engineering, Imam Khomeini International University, Qazvin, Qazvin, Iran

چکیده [English]

The study aimed to investigate the performance and evaluate the effect of incorporation of Cu and Mg on the structural, biological, and bactericidal properties of the sol-gel derived 58S bioactive glass containing Mg and Cu. The structural and morphological evaluations of the synthesized glasses were performed by the mean of X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analysis. The effect of Cu and Mg content in the composition on the quality and quantity of in vitro bioactivity was examined by performing 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) analysis. The antibacterial performance of Cu and Mg incorporated bioactive glasses were evaluated against MRSA bacteria. The results confirmed the formation of a hydroxyapatite layer on the glass surface. Adding copper and magnesium to the 58S bioactive glass composition increased cell activity and proliferation and improved antibacterial performance. The results suggest that BG-5/5 (including 5 mol % of both CuO and MgO) as the bioactive glass with the optimal amount of magnesium and copper in its composition.

کلیدواژه‌ها [English]

  • Apatite
  • Bioactivity
  • Biomedical applications
  • Sol-gel process
1.   Dickson, G., Buchanan, F., Marsh, D., Harkin-Jones, E., Little, U., McCaigue, M., "Orthopaedic tissue engineering and bone regeneration", Technology and Health Care, Vol. 15, (2007), 57-67. https://doi.org/10.3233/THC-2007-15106
2.   Sharma, B., Varghese, S., "Progress in orthopedic biomaterials and drug delivery", Drug Delivery and Translational Research, Vol. 6, (2016), 75-76. https://doi.org/10.1007/s13346-016-0288-9
4.   Mozafari, M., Karbasi, S., Monshi, A., "Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline Bioglass 45S5 scaffold for bone tissue engineering", Journal of Advanced Materials and Technologies, Vol. 2, (2008), 87-96.  (In Persian)https://doi.org/10.30501/JAMT.2010.70145
5.   Łączka, M., Cholewa-Kowalska, K., Osyczka, A. M., "Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants", Ceramics International, Vol. 42, (2016), 14313-14325. https://doi.org/10.1016/j.ceramint.2016.06.077
6.   Hench, L. L., "The story of Bioglass®", Journal of Materials Science: Materials in Medicine, Vol. 17, (2006), 967-978. https://doi.org/10.1007/s10856-006-0432-z
7.   Sohrabi, M., Hesaraki, S., Kazemzadeh, A., Alizadeh, M., "The influence of sol-gel processing method on physical properties and acellular in vitro reactivity of bioactive glasses based on CaO-SiO2-P2O5: Acidic catalysed single step process versus acid-base two step quick-gelling method", Journal of Advanced Materials and Technologies, Vol. 2, (2020), 31-36. (In Persian),  https://doi.org/10.30501/JAMT.2011.70221
8.   Ravarian, R., Moztarzadeh, F., Hashjin, M. S., "Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite", Ceramics International, Vol. 36, (2010), 291-297. https://doi.org/10.1016/j.ceramint.2009.09.016
9.   Mehdikhani, M., Fathi, M. H., Mortazavi, V.,Mousavi, S. B., "Preparation, characterization and bioactivity evaluation of sol–gel bioactive glass nano powder with three different compositions", Journal of Advanced Materials and Technologies, Vol. 2, (2010), 275-283. (In Persian) https://doi.org/10.30501/JAMT.2011.70220
10. Moghanian, A., Firoozi, S., Tahriri, M., "Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass", Ceramics International, Vol. 43, (2017), 12835-12843. https://doi.org/10.1016/j.ceramint.2017.06.174
11. Ma, J., Chen, C. Z., Wang, D. G., Shao, X., Wang, C. Z., Zhang, H. M., "Effect of MgO addition on the crystallization and in vitro bioactivity of glass ceramics in the CaO–MgO–SiO2–P2O5 system", Ceramics International, Vol. 38, (2012), 6677-6684. https://doi.org/10.1016/j.ceramint.2012.05.056
12. Moghanian, A., Sedghi, A., Ghorbanoghli, A., Salari, E., "The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass", Ceramics International, Vol. 44, (2018), 9422-9432. https://doi.org/10.1016/j.ceramint.2018.02.159
13. El-Kady, M., Ali, A. F., Rizk, R. A., Ahmed, M. M., "Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles", Ceramics International, Vol. 38, (2012), 177-188. https://doi.org/10.1016/j.ceramint.2011.05.158
14. Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., Xiao, Y., "Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity", Biomaterials, Vol. 34, (2013), 422-433. https://doi.org/10.1016/j.biomaterials.2012.09.066
15. Du, R. L., Chang, J., Ni, S. Y., Zhai, W. Y., Wang, J. Y., "Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics", Journal of Biomaterials Applications, Vol. 20, (2006), 341-360. https://doi.org/10.1177/0885328206054535
16. Kilcup, N., Möncke, D., Kamitsos, E. I., Houizot, P., Célarié, F., Rouxel, T., Wondraczekb, L., "Unanticipated stabilization of zinc-silicate glasses by addition of lanthanum: Implications for therapeutic inorganic ion delivery systems", Journal of Non-Crystalline Solids, Vol. 429, (2015), 83-92. https://doi.org/10.1016/j.jnoncrysol.2015.08.028
17. Ma, J., Chen, C. Z., Wang, D. G., Hu, J, H., "Synthesis, characterization and in vitro bioactivity of magnesium-doped sol-gel glass and glass-ceramics", Ceramics International, Vol. 37, (2011), 1637-1644. https://doi.org/10.1016/j.ceramint.2011.01.043
18. Hoppe, A., Sarker, B., Detsch, R., Hild, N., Mohn, D., Starkb, W. J., Boccaccinia, A. R., "In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles", Journal of Non-Crystalline Solids, Vol. 387, (2014), 41-46. https://doi.org/10.1016/j.jnoncrysol.2013.12.010
19. Bainoa, F., Novajraa, G., Miguez-Pachecob, V., Boccaccinib, R., Vitale-Brovaronea, C., "Bioactive glasses: Special applications outside the skeletal system", Journal of Non-Crystalline Solids, Vol. 432, (2016), 15-30. https://doi.org/10.1016/j.jnoncrysol.2015.02.015
20. Maguire, M. E., Cowan, J. A., "Magnesium chemistry and biochemistry", Biometals, Vol. 15, (2002), 203-210. https://doi.org/10.1023/A:1016058229972
21. Viering, M., de Baaij, J. H. F., Walsh, S. B., Kleta, R., "Genetic causes of hypomagnesemia, a clinical overview", Pediatr Nephrol, Vol. 32, (2017), 1123-1135. https://doi.org/10.1007/s00467-016-3416-3
22. Castiglioni, S., Cazzaniga, A., Albisetti, W., Maier, J. A. M., "Magnesium and osteoporosis: Current state of knowledge and future research directions", Nutrients, Vol. 5, (2013), 3022-3033. https://doi.org/10.3390/nu5083022
23. Belluci, M., Schoenmaker, T., Rossa-Junior, C., "Magnesium deficiency results in an increased formation of osteoclasts", The Journal of Nutritional Biochemistry, Vol. 24, (2013), 1488-1498. https://doi.org/10.1016/j.jnutbio.2012.12.008
24. Bernick, S., Hungerford, G. F., "Effect of dietary magnesium deficiency on the bones and teeth of rats", Journal of Dental Research, Vol. 44, (1965), 1317-1324. https://doi.org/10.1177/00220345650440063401
25. Rude, R., Gruber, H. E., Wei, L. Y., Frausto, A., Mills, B. G., "Magnesium deficiency: Effect on bone and mineral metabolism in the mouse", Calcified Tissue International, Vol. 72, (2003), 32-41. https://doi.org/10.1007/s00223-001-1091-1
26. Saghiri, A., Asatourian, A., Orangi, J., Sorenson, C. M., Sheibania, N., "Functional role of inorganic trace elements in angiogenesis—Part II: Cr, Si, Zn, Cu, and S", Critical Reviews in Oncology/Hematology, Vol. 96, (2015), 143-155. https://doi.org/10.1016/j.critrevonc.2015.05.011
27. Nasulewicz, A., Mazur, A., Opolski, A., "Role of copper in tumour angiogenesis—clinical implications", Journal of Trace Elements in Medicine and Biology, Vol. 18, (2004), 1-8. https://doi.org/10.1016/j.jtemb.2004.02.004
28. Li, J., Zhai, D., Lv, F., Yu, Q., Ma, H., Yin, J., Yi, Z., Liu, M., Chang, J., Wu, C., "Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing", Acta Biomaterialia, Vol. 36, (2016), 254-266. https://doi.org/10.1016/j.actbio.2016.03.011
29. Ye, J., He, J., Wang, C., Yao, K., Gou, Z., "Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity", Biotechnology Letters, Vol. 36, (2014), 961-968. https://doi.org/10.1007/s10529-014-1465-x
30. Ma, J., Chen, C. Z., Wang, D. G., Jiao, Y., Shi, J. Z., "Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses", Colloids and Surfaces B: Biointerfaces, Vol. 81, (2010), 87-95. https://doi.org/10.1016/j.colsurfb.2010.06.022
31. Dietrich, E., Oudadesse, H., Lucas-Girot, A., Mami, M., "In vitro bioactivity of melt‐derived glass 46S6 doped with magnesium", Journal of Biomedical Materials Research, Vol. 88, (2009), 1087-1096. https://doi.org/10.1002/jbm.a.31901
32. Watts, S., Hill, R. G., O'donnell, M. D., Law, R. V., "Influence of magnesia on the structure and properties of bioactive glasses", Journal of Non-Crystalline Solids, Vol. 356, (2010), 517-524. https://doi.org/10.1016/j.jnoncrysol.2009.04.074
33. Prabhu, M., Kavitha, K., Manivasakan, P., Rajendran, V., "Synthesis, characterization and biological response of magnesium-substituted nanobioactive glass particles for biomedical applications", Ceramics International, Vol. 39, No. 2, (2013), 1683-1694. https://doi.org/10.1016/j.ceramint.2012.08.011
34. Erol, M., Chen, C. Z., Wang, D. G., Hu, J. H., "Synthesis, characterization, and in vitro bioactivity of sol‐gel‐derived Zn, Mg, and Zn‐Mg Co‐doped bioactive glasses", Chemical Engineering & Technology, Vol. 33, (2010), 1066-1074. https://doi.org/10.1002/ceat.200900495
35. Moya, J., Tomsia, A. P., Pazo, A., Santos, C., "In vitro formation of hydroxylapatite layer in a MgO-containing glass", Journal of Materials Science: Materials in Medicine, Vol. 5, (1994), 529-532. https://doi.org/10.1007/BF00124885
36. Salinas, A., Roman, J., Vallet-Regi, M., Oliveira, J. M., "In vitro bioactivity of glass and glass-ceramics of the 3CaO P2O5–CaO SiO2–CaO MgO 2SiO2 system", Biomaterials, Vol. 21, (2000), 251-257. https://doi.org/10.1016/S0142-9612(99)00150-7
37. Saboori, A., Rabiee, M., Moztarzadeh, F., Sheikhi, M., Tahriri, M., Karimi, M., "Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass", Materials Science and Engineering: C, Vol. 29, (2009), 340-345. https://doi.org/10.1016/j.msec.2008.07.004
38. Wang, X., Li, X., Ito, A., Sogo, Y., "Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M= Mg, Zn, Sr) bioactive glass scaffolds", Acta Biomaterialia, Vol. 7, (2011), 3638-3644. https://doi.org/10.1016/j.actbio.2011.06.029
39. Balamurugan, A., Balossier, G., Michel, J., Kannan, S., Benhayoune, H., Rebelo, A. H. S., Ferreira,. J. M. F., "Sol gel derived SiO2‐CaO‐MgO‐P2O5 bioglass system—Preparation and in vitro characterization", Journal of Biomedical Materials Research Part B, Vol. 83, (2007), 546-553. https://doi.org/10.1002/jbm.b.30827
40. Namba, R. S., Inacio, M. C. S., Paxton, E. W., "Risk factors associated with deep surgical site infections after primary total knee arthroplasty: an analysis of 56,216 knees", The Journal of Bone & Joint Surgery, Vol. 95, (2013), 775-782. https://doi.org/10.2106/JBJS.L.00211
42. Kolmas, J., Groszyk, E., Kwiatkowska-Różycka1, D., "Substituted hydroxyapatites with antibacterial properties", BioMed Research International, Vol. 2014, (2014). https://doi.org/10.1155/2014/178123
43. Campoccia, D., Montanaro, L., Arciola, C. R., "A review of the biomaterials technologies for infection-resistant surfaces", Biomaterials, Vol. 34, (2013), 8533-8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
44. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T. Yamamuro, T., "Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3", Journal of Biomedical Materials Research, Vol. 24, (1990), 721-734. https://doi.org/10.1002/jbm.820240607
45. Elgendy, M., Norman, M. E., Keaton, A. R., Laurencin, C. T., "Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: An approach towards the development of a bone-bioerodible polymer composite material", Biomaterials, Vol. 14, (1993), 263-269. https://doi.org/10.1016/0142-9612(93)90116-J
46. Gotoh, Y., Hiraiwa, K., Nagayama, M., "In vitro mineralization of osteoblastic cells derived from human bone", Bone and Mineral, Vol. 8, (1990), 239-250. https://doi.org/10.1016/0169-6009(90)90109-S
47. Yellowley, E., Jacobs, C. R., Donahue, H. J., "Functional gap junctions between osteocytic and osteoblastic cells", Journal of Bone and Mineral Research, Vol. 15, (2000), 209-217. https://doi.org/10.1359/jbmr.2000.15.2.209
48. Hu, S., Chang, J., Liu, M., Ning, C., "Study on antibacterial effect of 45S5 Bioglass®", Journal of Materials Science: Materials in Medicine, Vol. 20, (2009), 281-286. https://doi.org/10.1007/s10856-008-3564-5
49. Hu, S., Ning, C., Zhou, Y., Chen, L., Lin, K., Chang, J., "Antibacterial activity of silicate bioceramics", Journal of Wuhan University of Technology-Mater. Sci. Ed., Vol. 26, (2011), 226-230. https://doi.org/10.1007/s11595-011-0202-8
50. Siqueira, R. L., Peitl, O., Zanotto, E. D., "Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: synthesis and in vitro bioactivity", Materials Science and Engineering: C, Vol. 31, (2011), 983-991. https://doi.org/10.1016/j.msec.2011.02.018
51. XiaoD.,Tan, Z., Fu, Y., Duan, K., Zheng, X., Lu, X., "Hydrothermal synthesis of hollow hydroxyapatite microspheres with nano-structured surface assisted by inositol hexakisphosphate", Ceramics International, Vol. 40, (2014), 10183-10188. https://doi.org/10.1016/j.ceramint.2014.02.057
52. Mozafari, M., Moztarzadeh, F., Tahriri, M., "Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid", Journal of Non-Crystalline Solids, Vol. 356, (2010), 1470-1478. https://doi.org/10.1016/j.jnoncrysol.2010.04.040
53. Kamalian, R., Yazdanpanah, A., Moztarzadeh, F., Ravarian, R., Moztarzadeh, Z., Tahmasbi, M., Mozafari, M., "Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone implants", Ceramics, Vol. 56, (2012), 331-340. Corpus ID: 45218459 https://www.irsm.cas.cz/materialy/cs_content/2012/Kamalian_CS_2012_0000.pdf
54. Vyas, V. K., Kumar, A. S., Prasad, S., Singh, S. P., Pyare, R., "Bioactivity and mechanical behaviour of cobalt oxide-doped bioactive glass", Bulletin of Materials Science, Vol. 38, (2015), 957-964. https://doi.org/10.1007/s12034-015-0936-6
55. Zhang, K., Yan, H., Bell, D. C., Stein, A., Francis, L. F., "Effects of materials parameters on mineralization and degradation of sol‐gel bioactive glasses with 3D‐ordered macroporous structures", Journal of Biomedical Materials Research, Vol. 66, (2003), 860-869. https://doi.org/10.1002/jbm.a.10093
56. Hench, L. L., Wilson, J., An introduction to bioceramics, World scientific, (1993). https://doi.org/10.1142/2028
57. Jones, J. R., "New trends in bioactive scaffolds: The importance of nanostructure", Journal of the European Ceramic Society, Vol. 29, (2009), 1275-1281. https://doi.org/10.1016/j.jeurceramsoc.2008.08.003
58. Chen, X., Ou, J., Wei, Y., Huang, Z., Kang, Y., Yin, G., "Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO–CaO–SiO2 system", Journal of Materials Science: Materials in Medicine, Vol. 21, (2010), 1463-1471. https://doi.org/10.1007/s10856-010-4025-5
59. Khvostenko, D., Hilton, T. J., Ferracane, J. L., Mitchell, J. C., Kruzica, J. J., "Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations", Dental Materials, Vol. 32, (2016), 73-81. https://doi.org/10.1016/j.dental.2015.10.007
60. Ruparelia, J. P., Chatterjeec, A. K., Duttaguptab, S. P., Mukherjia, S., "Strain specificity in antimicrobial activity of silver and copper nanoparticles", Acta Biomaterialia, Vol. 4, (2008), 707-716. https://doi.org/10.1016/j.actbio.2007.11.006
61. Robinson, D. A., Griffith, R. W., Shechtman, D., Evans, R. B., Conzemiusa, M. G., "In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus", Acta Biomaterialia, Vol. 6, (2010), 1869-1877. https://doi.org/10.1016/j.actbio.2009.10.007
62. Allan, I., Newman, H., Wilson, M., "Antibacterial activity of particulate Bioglass® against supra-and subgingival bacteria", Biomaterials, Vol. 22, (2001), 1683-1687. https://doi.org/10.1016/S0142-9612(00)00330-6