رفتار فوتولومینسانس و فروسرخ نانوالیاف ZnO آلایش شده با Al

نوع مقاله: یادداشت پژوهشی

نویسندگان

1 دانشکده فنی و مهندسی، گروه مهندسی مواد، دانشگاه بوعلی سینا همدان، همدان، ایران.

2 دانشگاه بوعلی سینا همدان، دانشکده فنی و مهندسی، گروه مهندسی مواد

3 دانشکده فنی و مهندسی، گروه مهندسی برق، دانشگاه بوعلی سینا همدان، همدان، ایران.

چکیده

اکسید روی (ZnO) به دلیل نیمه­هادی بودن و دارا بودن شکاف انرژی پهن در صنایع مختلف از جمله نوری و الکترونیک مورد استفاده قرار می­گیرد. در این پژوهش نانوالیاف ZnO و آلایش شده با آلومینیوم (با نسبت­Al/Zn برابر شش درصد وزنی) با استفاده از فرایند الکتروریسی و در ادامه پس از کلسینه شدن در دماهای مختلف (250، 300 و 400 درجه سانتی­گراد) سنتز شدند. اثر آلایش بر ریزساختار، بلورشناسی، بنیان­های مولکولی و رفتار فوتولومینسانس نانو­الیاف ZnO به ترتیب به کمک میکروسکوپ الکترونی روبشی (SEM)، آنالیز پراش پرتو ایکس (XRD)، طیف سنجی فروسرخ تبدیل فوریه (FTIR) و طیف سنج فوتولومینسانس (PL) بررسی شد. نتایج نشان داد که متوسط قطر نانو­الیاف ZnO حاوی Al از 131 به 468 نانومتر پس از کلسینه شدن افزایش یافت. آنالیز XRD نشان داد که ZnO با ساختار هگزاگونال وورتزیت در هر دو نمونه تهیه شد و هم­چنین تایید کرد که اتم­های Al در ساختار ZnO آلایش شده­اند. مقایسه طیف FTIR نمونه­ها نشان داد که آلایش Al  باعث انتقال پیوند Zn-O به بسامد­های بیشتر و تشکیل پیوندهای قوی در شبکه ZnO شد. نتایج PL نشان داد که آلایش Al خواص نوری ZnO را بهبود بخشید، زیرا تشکیل عیوب ساختاری در اثر آلایش Al باعث ایجاد سطوح با انرژی کمتر برای نقل و انتقال الکترون از پهنه رسانش به پهنه ظرفیت می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Photoluminescence and IR Properties of Al doped ZnO Nanofibers

نویسندگان [English]

  • soheila osali 1
  • Hamid Esfahani 2
  • Hamid Reza Karami 3
1 Department of materials Engineering, Bu-Ali Sina University, Hamedan, Iran
2 Department of Materials Engineering, Bu-Ali Sina University
3 Department of Electrical Engineering, Bu-Ali Sina University, Hamedan, Iran,
چکیده [English]

Zinc oxide (ZnO) is used widely in electrical and optical applications due to its wide band gap and also semiconductor properties. In the present study ZnO and Al doped (Al/Zn ratio equals to 6 wt.%) nanofibers (NFs) were synthesized by electrospinning method and post calcination at different temperatures 250, 300 and 400 ˚C. The effect of dopant on  microstructure, crystallography, functional molecule groups, and photoluminescence behavior of ZnO NFs were studied by means of scanning electron microscopy (SEM), X-ray diffraction pattern (XRD), Fourier-transform infrared spectroscopy (FTIR), and photoluminescence spectroscopy (PL), respectively. Results showed that the average diameter of ZnO NFs was increased from 131 to 468 nm after calcination. XRD analysis indicated that the hexagonal wurtzite ZnO was formed in both samples. Also it confirmed that the Al dopant was incorporated into ZnO NFs. Comparison of FTIR spectra showed that the Al doping caused to shift the Zn-O band to higher frequencies and also construct the stronger bonds inside the ZnO lattice. PL results also revealed that the Al doping enhanced the optical properties. It is because that the point defects issued by Al doping create lower energy levels for transferring the electrons from conduction band to valence band.

کلیدواژه‌ها [English]

  • Semiconductor
  • Zinc oxide
  • Nanofiber
  • Doping
  • Electrospinning
  • Photoluminescence
  • FTIR
1.      Hua J, Wei Q, Du Y, Yuan X, Wang J, Zhao J, Li H. Controlling electron transfer from photoexcited quantum dots to Al doped ZnO nanoparticles with varied dopant concentration. Chemical Physics Letters. 2018 Jan 16;692:178-83.

2.      Krstulović N, Salamon K, Budimlija O, Kovač J, Dasović J, Umek P, Capan I. Parameters optimization for synthesis of Al-doped ZnO nanoparticles by laser ablation in water. Applied Surface Science. 2018 May 15;440:916-25.

3.      Ajala F, Hamrouni A, Houas A, Lachheb H, Megna B, Palmisano L, Parrino F. The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water. Applied Surface Science. 2018 Jul 1;445:376-82.

4.      Cao F, Li C, Li M, Li H, Huang X, Yang B. Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Applied Surface Science. 2018 Jul 31;447:173-81.

5.      Coşkun B, Mensah-Darkwa K, Soylu M, Al-Sehemi AG, Dere A, Al-Ghamdi A, Gupta RK, Yakuphanoglu F. Optoelectrical properties of Al/p-Si/Fe: N doped ZnO/Al diodes. Thin Solid Films. 2018 May 1;653:236-48.

6.      Tyona MD, Jambure SB, Lokhande CD, Banpurkar AG, Osuji RU, Ezema FI. Dye-sensitized solar cells based on Al-doped ZnO photoelectrodes sensitized with rhodamine. Materials Letters. 2018 Jun 1;220:281-4.

7.      Manzhi P, Alam MB, Kumari R, Krishna R, Singh RK, Srivastava R, Sinha OP. Li-doped ZnO nanostructures for the organic light emitting diode application. Vacuum. 2017 Dec 1;146:462-7.

8.      Ungula J, Dejene BF, Swart HC. Band gap engineering, enhanced morphology and photoluminescence of un-doped, Ga and/or Al-doped ZnO nanoparticles by reflux precipitation method. Journal of Luminescence. 2018 Mar 1;195:54-60.

9.      Choi YS, Kang JW, Hwang DK, Park SJ. Recent advances in ZnO-based light-emitting diodes. IEEE Transactions on Electron Devices. 2009 Nov 10;57(1):26-41.

10.    Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T. Recent progress in processing and properties of ZnO. Progress in materials science. 2005 Mar 1;50(3):293-340.

11.    Wang KL, Xin YQ, Zhao JF, Song SM, Chen SC, Lu YB, Sun H. High transmittance in IR region of conductive ITO/AZO multilayers deposited by RF magnetron sputtering. Ceramics International. 2018 Apr 15;44(6):6769-74.

12.    Park M, Han SM. Enhancement in conductivity through Ga, Al dual doping of ZnO nanofibers. Thin Solid Films. 2015 Sep 1;590:307-10.

13.    Zhou B, Wu Y, Wu L, Zou K, Gai H. Effects of Al dopants on the microstructures and optical properties of ZnO nanofibers prepared by electrospinning. Physica E: Low-dimensional Systems and Nanostructures. 2009 Feb 1;41(4):705-10.

14.    Sandeep KM, Bhat S, Dharmaprakash SM. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films. Journal of Physics and Chemistry of Solids. 2017 May 1;104:36-44.

15.    Cetin SS, Uslu I, Aytimur A, Ozcelik S. Characterization of Mg doped ZnO nanocrystallites prepared via electrospinning. Ceramics International. 2012 Jul 1;38(5):4201-8.

16.    Wu L, Wu Y, Wei LÜ. Preparation of ZnO nanorods and optical characterizations. Physica E: Low-dimensional Systems and Nanostructures. 2005 Jun 1;28(1):76-82.

17.    Zhang Y, Zhu F, Zhang J, Xia L. Converting layered zinc acetate nanobelts to one-dimensional structured ZnO nanoparticle aggregates and their photocatalytic activity. Nanoscale Research Letters. 2008 Jun;3(6):201.

18.    Birajdar SD, Alange RC, More SD, Murumkar VD, Jadhav KM. Sol-gel auto combustion synthesis, structural and magnetic properties of Mn doped ZnO nanoparticles. Procedia Manufacturing. 2018 Jan 1;20:174-80.

19.           Patterson AL. The Scherrer formula for X-ray particle size determination. Physical review. 1939 Nov 15;56(10):978.

20.    Foreman JV, Everitt HO, Yang J, McNicholas T, Liu J. Effects of reabsorption and spatial trap distributions on the radiative quantum efficiencies of ZnO. Physical Review B. 2010 Mar 15;81(11):115318.

21.    Park Y, Cho K, Kim S. Thermoelectric characteristics of glass fibers coated with ZnO and Al-doped ZnO. Materials Research Bulletin. 2017 Dec 1;96:246-9.

22.    Samanta PK, Chaudhuri PR. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods. Frontiers of Optoelectronics in China. 2011 Jun 1;4(2):130.

23.    Khan F, Baek SH, Kim JH. Influence of oxygen vacancies on surface charge potential and transportation properties of Al-doped ZnO nanostructures produced via atomic layer deposition. Journal of Alloys and Compounds. 2017 Jun 30;709:819-28.

24.    Zhao M, Wang X, Cheng J, Zhang L, Jia J, Li X. Synthesis and ethanol sensing properties of Al-doped ZnO nanofibers. Current Applied Physics. 2013 Mar 1;13(2):403-7.

25.    Nohara A, Takeshita S, Iso Y, Isobe T. Solvothermal synthesis of YBO 3: Ce 3+, Tb 3+ nanophosphor: influence of B/(Y+ Ce+ Tb) ratio on particle size and photoluminescence intensity. Journal of materials science. 2016 Apr 1;51(7):3311-7.

26.    Yuliah Y, Bahtiar A, Fitrilawati, Siregar RE. The optical band gap investigation of PVP-capped ZnO nanoparticles synthesized by sol-gel method. InAIP Conference Proceedings 2016 Feb 24 (Vol. 1712, No. 1, p. 050018). AIP Publishing.

27.    Zhao D, Andreazza C, Andreazza P, Ma J, Liu Y, Shen D. Temperature-dependent growth mode and photoluminescence properties of ZnO nanostructures. Chemical physics letters. 2004 Dec 1;399(4-6):522-6.

28.    Niu W, Zhu H, Wang X, Ye J, Song F, Zhou J, Gu S, Shi Y, Xu Y, Zhang R. Identification of defect-related emissions in ZnO hybrid materials. Applied Physics Letters. 2015 Jul 13;107(2):021902.

29.    Kumar V, Ntwaeaborwa OM, Swart HC. Deep level defect correlated emission and Si diffusion in ZnO: Tb3+ thin films prepared by pulsed laser deposition. Journal of colloid and interface science. 2016 Mar 1;465:295-303.