نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی مواد، دانشگاه صنعتی سهند، تبریز، ایران

2 گروه مهندسی مواد، دانشکده فنی مهندسی، دانشگاه مراغه، مراغه، ایران

چکیده

در این پژوهش پودر پیش ­آلیاژی نانوبلورین Cu-20Zn-10Al با استفاده از روش آلیاژسازی مکانیکی از پودرهای عنصری تولید و با استفاده از فرآیند تف ­جوشی فاز مایع، قطعات نانوساختار تولید شد. پارامترهایی نظیر زمان آسیاکاری و عامل کنترل ­کننده فرآیند جهت تعیین شرایط بهینه آلیاژسازی مورد مطالعه قرار گرفت. پودرهای آسیاکاری شده با استفاده از آنالیز تفرق اشعه ایکس، میکروسکوپ الکترونی روبشی، آنالیز اندازه ذرات با روش لیزر و آنالیز حرارتی هم­زمان مورد بررسی قرار گرفتند. سپس پودرهای آسیاکاری شده در زمان­ های مختلف در فشار 600 مگاپاسگال فشرده شده و براساس پنجره دمایی تف­ جوشی حاصل از آنالیز حرارتی، در دماهای مختلف در بازه 760 تا 790 درجه سانتی­گراد تف­ جوشی شدند. بعد از تف­ جوشی مشخصه ­­های ریزساختاری، قابلیت فشردن، چگالش، ریزسختی ­سنجی و تفرق اشعه ایکس نمونه­ ها بررسی شد. نتایج نشان می­ دهد که محلول جامد فوق­ اشباع همگن Cu-Zn-Al از پودر آسیاکاری شده با اندازه بلورک 4/2 نانومتر و بیشینه چگالش بعد از تف­ جوشی نمونه آسیاکاری شده به­ مدت 56 ساعت و در دمای C775° به­ دست می ­آید.

کلیدواژه‌ها

عنوان مقاله [English]

Production of Cu-20Zn-10Al Nanostructured Alloy by Mechanical Alloying and Liquid Phase Sintering

نویسندگان [English]

  • Behzad Abdi 1
  • Maziyar Azadbeh 1
  • Ahad Mohammadzadeh 2

1 Department of Materials Engineering, Sahand University of Technology, Tabriz, Iran

2 Department of Materials Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran

چکیده [English]

In this study, a nanocrystallite Cu-20Zn-10Al prealloyed powder was produced by mechanical alloying method from elemental powders and nanostructured samples prepared via liquid phase sintering process. The different milling times and process control agents were considered as milling parameters to determine of optimum conditions. The milled powder was investigated by means of X-ray diffraction measurements, scanning electron microscopy, particle size analysis by means of laser technique and simultaneous thermal analysis. Then the milled powder at various milling times was cold compacted at 600 MPa and sintered at different temperatures ranging from 760 to 790 °C according to liquid phase temperature measuring by diffraction thermal analysis. Microstructural characterization, compaction and densification, micro-hardness measurement and X-ray diffraction measurements were conducted from consolidated samples at different sintering temperature and milling times. The results show that a Cu-Zn-Al homogenous supersaturated solid solution with a crystallite size of 2.4 nm (by Stearic acid as PCA) was obtained after 56 h of milling time. Furthermore, the maximum densification occurred at 775 °C with a milling time of 56 h.

کلیدواژه‌ها [English]

  • Mechanical Alloying
  • Prealloyed Powder
  • Nanocrystalline Cu-20Zn-10Al
  • Liquid Phase sintering
  1.        Mohammadzadeh, A., Akbarpour, M. R., Heidarzadeh, A., Production of nanostructured copper powder: microstructural assessments and modeling. Materials Research Express, 2018. 5(6), 1-10.
  2.        Zhang, S., L. Lu, and M. Lai, Cu-based shape memory powder preparation using the mechanical alloying technique. Materials Science and Engineering: A, 1993. 171(1), 257-262.
  3.        Soni, P., Mechanical alloying: fundamentals and applications, Cambridge Int Science Publishing, 1998.
  4.        Suryanarayana, C., E. Ivanov, and V. Boldyrev, The science and technology of mechanical alloying. Materials Science and Engineering: A, 2001, 304, 151-158.
  5.        Sesma, F., et al., An optimum path to obtain β Cu–Zn–Al by mechanical alloying. Journal of Alloys and Compounds, 2013. 573, 122-127.
  6.        Pourkhorshidi, S., et al., A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders. Materials Science and Engineering: A, 2012. 556, 658-663.
  7.        Van Humbeeck, J., Non-medical applications of shape memory alloys. Materials Science and Engineering: A, 1999. 273, 134-148.
  8.        Lovey, F. and V. Torra, Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al. Progress in Materials Science, 1999. 44(3), 189-289.
  9.        Yang, G.-S., J.-K. Lee, and W.-Y. Jang, Effect of grain refinement on phase transformation behavior and mechanical properties of Cu-based alloy. Transactions of Nonferrous Metals Society of China, 2009. 19(4), 979-983.
  10. Melton, K. N., and O. Mercier, Fatigue life of CuZnAl alloys, Scripta Metallurgica, 1979, 13(1), 73-75.
  11. Kim, Hyoun Woo, A study of the two-way shape memory effect in Cu–Zn–Al alloys by the thermomechanical cycling method, Journal of materials processing technology, 2004, 146 (3), 326-329.
  12.        Suzuki, Y., K. Otsukaand, and C. Wayman, Fabrication of shape memory alloys. Shape memory materials, 1999, 133-148.
  13.        Dericioglu, A.F., B. Ögel, and S. Bor, Production of Cu-Zn-Al Shape Memory Alloys by Powder Metallurgy from Elemental Powders. Materials Development and Processing-Bulk Amorphous Materials, Undercooling and Powder Metallurgy, 2000, 8, 340-344.
  14. Williamson, G. and W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1953. 1(1), 22-31.
  15. Cullity, B.D. and S.R. Stock, Elements of X-ray Diffraction, Pearson, 2001.
  16. Azadbeh, M., Mohammadzadeh, A., Danninger, H. and Gierl-Mayer, C., On the Densification and Elastic Modulus of Sintered Cr-Mo Steels, Metallurgical and Materials Transactions B, 2015. 46(3), 1471-1483.
  17. Suryanarayana, C., Mechanical alloying and milling. Progress in materials science, 2001. 46(1), 1-184.
  18. Zhang, Y., L. Lu, and S. Yap, Prediction of the amount of PCA for mechanical milling. Journal of Materials Processing Technology, 1999. 89, 260-265.
  19. Alamo, A., et al. Microstructure and textures of ODS ferritic alloys obtained by mechanical alloying. in Materials Science Forum, Trans Tech Publ, 1992.
  20. Koch, C., Materials synthesis by mechanical alloying. Annual Review of Materials Science, 1989. 19(1), 121-143.
  21. Callister, W. D., Materials Science and Engineering, John Wiley & Sons, 8thEdition, 2010.
  22. Haines, P. J., Thermal methods of analysis- principles, applications and problems, London: Blackie Academic & Professional, 1995.