بررسی تشکیل ترک‌‌های انجمادی و ذوبی جوشکاری پرتو الکترونی سوپرآلیاژ Zhs6u در حرارت‌های ورودی مختلف

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه سرامیک، پژوهشگاه مواد و انرژی، کرج، ایران.

2 پژوهشکده مواد پیشرفته و انرژی های نو، سازمان پژوهش های علمی و صنعتی ایران، تهران، ایران

چکیده

در این پژوهش به بررسی جوش­پذیری سوپرآلیاژ پایه نیکل رسوب­سخت­شونده Zhs6u از طریق مطالعه میزان ترک­ها و تغییرات ریزساختاری در فلز جوش و منطقه HAZ پرداخته شد. هدف این پروژه دست­یابی به پارامترهای بهینه جوشکاری تعمیری پرتو الکترونی و بررسی تأثیر مقادیر مختلف حرارت ورودی بر ریزساختار و خواص فلز جوش است. لذا تمامی نمونه­ها پس از عملیات حرارتی پیش از جوشکاری با سیکل بهینه با مقادیر متفاوت جریان و سرعت­های مختلف، تحت ولتاژ ثابت جوشکاری شدند. نتایج مشاهدات ریزساختاری نشان داد که افزایش حرارت ورودی در جوشکاری تعمیری سوپرآلیاژ Zhs6u منجر به افزایش حساسیت به ترک­های انجمادی در منطقه جوش خواهد شد. هم­چنین مشاهدات ریزساختاری در نمونه­های جوشکاری شده با حرارت­های ورودی متفاوت نشان داد که منطقه جوش مشابه بخش پایه از فاز زمینه شامل فاز  و رسوبات ، فاز یوتکتیک  و فاز کاربید با مورفولوژی حروف­چینی تشکیل شده است که مورفولوژی این فازها در جوش با زمینه متفاوت است اما از نظر ترکیب شیمیایی و نوع فاز، مشابه فلز پایه می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of solidification and liquation cracks formation of Zhs6u superalloy electron beam welding at different heat inputs.

نویسندگان [English]

  • Arash Khakzadshahandashti 1
  • Mohammad Reza Rahimipour 1
  • Kourosh Shirvani 2
  • Mansour Razavi 1
1 Department of Ceramic, Materials and Energy Research Center, Karaj, Iran.
2 Department of Material and Renewal Energy, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
چکیده [English]

In this research, susceptibility of the formation of liquation and solidification cracks during the electron beam welding of the Zhs6u superalloy was investigated. The aim of this research is obtaining of the desirable parameters of the electron beam welding for the repair process and investigation of the effect of different values of heat input on properties and microstructure of HAZ and weld area. After the pre-weld heat treatment cycle, all test samples were welded by different values of current and welding speed and by the constant value of voltage. Microstructural investigations revealed the detrimental effect of the increase in the heat input on the susceptibility of the formation of the solidification cracks in the weld region of the samples. The microstructure of the weld region was consisted of the matrix phase including and phase, eutectic phase and the carbide phase with Chinese scripts morphology. Chemical composition of these phases was similar to the chemical composition of the equivalent phases in the base material, but the morphology of the phases was completely different.

کلیدواژه‌ها [English]

  • EBW repair welding
  • Zhs6u superalloy
  • heat input
  • liquation cracks
  • Solidification cracks

 

1.      John C. Lippold, S.D.K., John N. DuPont Welding Metallurgy and Weldability of Nickel-Base Alloys, Wiley, 1996.

2.      Angella, G., Barbieri, G., Donnini, R., Montanari, R., Richetta, M., Varone, A., Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness, Materials, 2017, 10 (9), 1033-1051.

3.      Ojo, O.A., Richards, N.L., Chaturvedi, M.C., Study of the fusion zone and heat-affected zone microstructures in tungsten inert gas-welded INCONEL 738LC superalloy, Metallurgical and Materials Transactions A, 2006, 37 (2), 421-433.

4.      Idowu, O. A., Ojo, O. A., Chaturvedi, M. C., Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy, Materials Science and Engineering: A, 2007, 454, 389-397.

5.      Agilan, M., Venkateswaran, T., Sivakumar, D., Pant, B., Effect of heat input on microstructure and mechanical properties of inconel-718 EB Welds, Procedia Materials Science, 2014, 5, 656-662.

6.      Montazeri, M., Ghaini, F. M., Ojo, O. A., Heat Input and the liquation Cracking of Laser Welded IN738LC Superalloy, Welding Journal, 2013, 92, 258-s.

7.      Egbewande, A. T., Buckson, R. A., Ojo, O. A., Analysis of laser beam weldability of Inconel 738 superalloy, Materials Characterization, 2010, 61 (5), 569-574.

8.      Richards, N. L., Nakkalil, R., & Chaturvedi, M. C., The influence of electron-beam welding parameters on heat-affected-zone microfissuring in INCOLOY 903, Metallurgical and Materials Transactions A, 1994, 25 (8), 1733-1745.

9.      Danis, Y., Arvieu, C., Lacoste, E., Larrouy, T., Quenisset, J. M., An investigation on thermal, metallurgical and mechanical states in weld cracking of Inconel 738LC superalloy, Materials & Design, 2010, 31 (1), 402-416.

10.    Min, D., Shen, J., Lai, S., Chen, J., Xu, N., Liu, H., Effects of heat input on the low power Nd:YAG pulse laser conduction weldability of magnesium alloy AZ61, Optics and Lasers in Engineering, 2011, 49 (1), 89-96.

11.    Rush, M. T., Colegrove, P. A., Zhang, Z., Broad, D., liquation and post-weld heat treatment cracking in Rene 80 laser repair welds, Journal of Materials Processing Technology, 2012, 212 (1), 188-197.

12.    Boucher, C., Varela, D., Dadian, M., Granjon, H., fissuration à chaud et progrès récents en soudabilité des alliages de nickel, type Inconel 718 et Waspaloy, Rev. Met. Paris, 1976, 73 (12), 817-832.

13.    Phillips, D.H., Welding Engineering: An Introduction, John Wiley & Sons, 2016.

14.    Hunziker, O., Dye, D., Reed, R. C., On the formation of a centreline grain boundary during fusion welding, Acta Materialia, 2000, 48 (17), 4191-4201.

15.    Yamaguchi, S., Kobayashi, H., Matsumiya, T., & Hayami, S., Effect of minor elements on hot workability of nickel-base superalloys, Metals Technology, 1979, 6 (1), 170-175.

16.    Kurz, W. and D.J. Fisher, Fundamentals of solidification, Trans Tech Publications,1986.

17.    Miller, W. A., Chadwick, G. A., On the magnitude of the solid/liquid interfacial energy of pure metals and its relation to grain boundary melting, Acta Metallurgica, 1967, 15 (4), 607-614.

18.    DuPont, J. N., Notis, M. R., Marder, A. R., Robino, C. V., Michael, J. R., Solidification and weldability of Nb-bearing superalloys, Welding Journal, 1998, 77, 417-431.

19.    Weiguo, Z., Lin, L., Hengzhi, F., Effect of cooling rate on MC carbide in directionally solidified nickel-based superalloy under high thermal gradient. Research & Development, 2012.

20.    DuPont, J. N., Notis, M. R., Marder, A. R., Robino, C. V., Michael, J. R., Solidification of Nb-bearing superalloys: Part I. Reaction sequences, Metallurgical and Materials Transactions A, 1998, 29 (11), 2785-2796.

21.    Ojo, O. A., Richards, N. L., Chaturvedi, M. C., liquation of various phases in HAZ during welding of cast Inconel 738LC, Materials science and technology, 2004, 20 (8), 1027-1034.

22.    Seo, S. M., Kim, I. S., Lee, J. H., Jo, C. Y., Miyahara, H., Ogi, K., Microstructural evolution in directionally solidified Ni-base superalloy IN792+ Hf, JOURNAL OF MATERIALS SCIENCE AND TECHNOLOGY-SHENYANG-, 2008, 24 (1), 110.

23.    DuPont, J. N., Marder, A. R., Notis, M. R., Robino, C. V., Solidification of Nb-bearing superalloys: Part II. Pseudoternary solidification surfaces, Metallurgical and Materials Transactions A, 1998, 29 (11), 2797-2806.

24.          DuPont, J. N., Robino, C. V., & Marder, A. R., MODELING SOLUTE REDISTRIBUTION AND MICROSTRUCTURAL DEVELOPMENT IN FUSION WELDS OF NB-BEARING SUPERALLOYS, acta materialia, 1998, 46 (13), 4781-4790.