فعالیت الکتروکاتالیزوری بهبود یافته نانوذرات پلاتین استرانسیم کبالت اکسید قرار داده شده بر روی گرافن اکسید کاهش یافته برای الکترواکسیداسیون متانول

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

مجتمع آموزش عالی فنی و مهندسی اسفراین، اسفراین، ایران

10.30501/jamt.2019.93884

چکیده

در این مطالعه، گرافن اکسید با روش اصلاح شده هامر تهیه شد و به عنوان بستری برای پراکنده ساختن نانوذرات استفاده گردید. نانوذرات استرانسیم کبالت اکسید تهیه و با تکنیک تفرق اشعه ایکس (XRD) شناسایی شدند. آنها به همراه نانوذرات پلاتین در بستر گرافن اکسید کاهش یافته برای تهیه کاتالیست پلاتین-استرانسیم کبالت اکسید-گرافن اکسید کاهش یافته (Pt-SrCoO3-δ-RGO) استفاده شدند. تصاویر میکروسکوپ الکترونی عبوری برای نشان دادن مورفولوژی و توزیع نانوذرات استفاده شدند. فعالیت کاتالیزوری کاتالیست تهیه شده برای الکترواکسیداسیون متانول با تکنیک های ولتامتری چرخه ای و طیف سنجی امپدانس الکتروشیمیایی بررسی گردید و با فعالیت کاتالیزوری کاتالیست پلاتین-گرافن اکسید کاهش یافته (Pt-RGO) مقایسه شد. اثرات برخی عوامل تجربی موثر بر اکسایش متانول در سطح کاتالیست Pt-SrCoO3-δ-RGO مانند غلظت متانول، دما و سرعت روبش بررسی گردید و شرایط بهینه پیشنهاد شدند. کاتالیست Pt-SrCoO3-δ-RGO فعالیت کاتالیزوری بهتری را برای اکسایش متانول نسبت به کاتالیست Pt-RGO از خود نشان داد که نشان می دهد Pt-SrCoO3-δ-RGO می تواند به عنوان کاتالیستی نویدبخش برای کاربرد در پیل های سوختی متانولی مستقیم به کار رود.

کلیدواژه‌ها


عنوان مقاله [English]

Improved Electrocatalytic Activity of Pt-SrCoO3-δ Nanoparticles Supported on Reduced Graphene Oxide for Methanol Electrooxidation

نویسندگان [English]

  • Mehri-Saddat Ekrami-Kakhki
  • Nahid Farzaneh
  • Sedigheh Abbasi
Esfarayen University of Technology- Esfarayen- Iran
چکیده [English]

In this study, graphene oxide was prepared by a modified Hummers’ method and used as support for dispersing of nanoparticles. SrCoO3-δ nanoparticles were prepared and characterized by X-ray diffraction technique. They were used accompanied by Pt nanoparticles on the reduced graphene oxide (RGO) support for preparing of Pt-SrCoO3-δ-RGO catalyst. Transmission electron microscopy images were used to show the morphology and distribution of nanoparticles. The catalytic activity of the prepared catalyst was investigated for methanol electrooxidation by cyclic voltammetry and electrochemical impedance spectroscopy techniques and compared with the catalytic activity of Pt-RGO catalyst. The effects of some experimental parameters affecting on methanol oxidation such as methanol concentration, temperature and scan rate were investigated on Pt-SrCoO3-δ-RGO catalyst and the optimum conditions were suggested. Pt-SrCoO3-δ-RGO catalyst showed better catalytic activity for methanol oxidation compared with Pt-RGO catalyst indicating that Pt-SrCoO3-δ-RGO can be used as a promising catalyst for application in direct methanol fuel cells.

کلیدواژه‌ها [English]

  • graphene oxide
  • SrCoO3-δ
  • Methanol
  • Fuel cells
1.   Noroozifar, M., Khorasani-Motlagh, M., Khaleghian-Moghadam, R., Ekrami-Kakhki, M.S., Shahraki, M., Incorporation Effect of Nanosized Perovskite LaFe0.7Co0.3O3 on the Electrochemical Activity of Pt Nanoparticles-Multi Walled Carbon Nanotube Composite toward Methanol Oxidation, Journal of Solid State Chemistry, 2013, 201, 41-47.
2.     Kakaei, K., Decoration of Graphene Oxide with Platinum Tin Nanoparticles for Ethanol Oxidation, Electrochimica Acta, 2015, 165, 330-337.
4.  Ekrami-Kakhki, M.S.,  Farzaneh,  N., Abbasi,  S., Makiabadi, B., Electrocatalytic Activity of Pt Nanoparticles Supported on Novel Functionalized Reduced Graphene Oxide-Chitosan for Methanol Electrooxidation, Journal of Materials Science: Materials in Electronics, 2017, 28 (17), 12373-12382.
5.    Wang, Z., Zhang, F., Zou, H., Yuan, Y., Wang, H., Xia, J., Wang, Z., Preparation of a Pt/NiFe Layered Double Hydroxide/Reduced Graphene Oxide Composite as an Electrocatalyst for Methanol Oxidation, Journal of Electroanalytical Chemistry, 2018, 818 (1), 198-203.
6.     Vilian,  A.T.E.,   Hwang, S. K.,  Kwak, C.H.,  Oh, S.Y., Kim, C.Y., Lee, G.W., Lee, J.B., Huh, Y.S., Han, Y.K., Pt-Au Bimetallic Nanoparticles Decorated on Reduced Graphene Oxide as an Excellent Electrocatalysts for Methanol Oxidation, Synthetic Metals, 2016, 219, 52-59.
7.     Noroozifar, M., Khorasani-Motlagh, M., Ekrami-Kakhki, M.S., Khaleghian-Moghadam, R., Enhanced Electrocatalytic Properties of Pt-Chitosan Nnanocomposite for Direct Methanol Fuel Cell by LaFeO3 and Carbon Nanotube, Journal of Power Sources, 2014, 248, 130-139.
8.    Ekrami-Kakhki, M.S., Yavari, Z., Saffari, J., Abbasi, S., Fabrication and Evaluation of Pt/M (M= Co, Fe) Chitosan Supported Catalysts for Methanol Electrooxidation: Application in Direct Alcohol Fuel Cell, Journal of Nanostructures, 2016, 6 (3), 221-234.
9.    Zhang, H.X., Okawa, Y., Kato, M., Sasaki, Y., Uosaki, K., Construction of Pt-Ni Nanocomposites from Pt-Ni Multinuclear Complexes on Gold (111) Surface and Their Electrocatalytic Activity for Methanol Oxidation, Journal of Electroanalytical Chemistry, 2016, 781, 41-47.
10.   Rivera Gavidia, L.M., García, G., Celorrio, V., Lázaro, M.J., Pastor, E., Methanol Tolerant Pt2CrCo Catalysts Supported on Ordered Mesoporous Carbon for the Cathode of DMFC, International Journal of Hydrogen Energy,2016, 41 (43), 19645-19655.
11.   Wang, H., Sheng, L., Zhao, X., An, K., Ou, Z., Fang, Y., One-Step Synthesis of Pt-Pd Catalyst Nanoparticles Supported on Few-Layer Graphene for Methanol Oxidation, Current Applied Physics, 2018, 18 (8), 898-904.
12.  Zaidi, S.J.,  Bello,  M.,  Al-Ahmed, A., Yousaf A.B.,  Imran, M., Mesoporous Carbon Supported Pt/MO2 (M = Ce, Pr, Nd, Sm) Heteronanostructure: Promising Non-Ru Methanol Oxidation Reaction Catalysts for Direct Methanol Fuel Cell Application, Journal of Electroanalytical Chemistry, 2017, 794, 86-92.
13. Tedsree, K., Thanatsiri, A., Comparative Study on the Catalytic Activity Between Pt-Decorated Ru and Ru-Decorated Pt Core-Shell Nanocatalyst toward Methanol Electro-oxidation, Materials Today: Proceedings, 2018, 5 (5), 10954-10963.
14.   Lan, A., Mukasyan, A.S., Perovskite-Based Catalysts for Direct Methanol Fuel Cells, The Journal of Physical Chemistry C, 2007, 111 (26), 9573-9582.
15.  Jiayue, H., Mingjuan, S., Xiaoyan, C., Chunyang, Z.,  Junying, Z., Mingshan, Z., Two Dimensional Perovskite La2Ti2O7 Nanosheet as Pt Catalyst Support for Photo-Assisted Methanol Oxidation Reaction, Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 231-238.
16.   Konopka, D.A., Li, M., Artyushkova, K., Marinkovic, N., Sasaki, K., Adzic, R., Ward, T. L., Atanassov, P., Platinum Supported on NbRuyOz as Electrocatalyst for Ethanol Oxidation in Acid and Alkaline Fuel Cells, The Journal of Physical Chemistry C, 2011,115 (7), 3043-3056.
17.  Fang, B., Kim, M., Yu, J.S., Hollow Core/Mesoporous Shell Carbon as a Highly Efficient Catalyst Support in Direct Formic Acid Fuel Cell, Applied Catalysis B: Environmental, 2008, 84 (1-2), 100-105.
18.  Li, X., Wang, H.J., Yua, H., Liu, Z.W., Peng, F., An Opposite Change Rule in Carbon Nanotubes Supported Platinum Catalyst for Methanol Oxidation and Oxygen Reduction Reactions, Journal of Power Sources, 2014, 260, 1-5.
19.    Lobato, J., Canizares, P., Ubeda, D., Pinar, F.J., Rodrigo, M.A., Testing PtRu/CNF Catalysts for a High Temperature Polybenzimidazole-Based Direct Ethanol Fuel Cell. Effect of Metal Content, Applied Catalysis B: Environmental, 2011, 106 (1-2), 174-180.
20.  Yang, H., Li, F., Shan, C., Han, D., Zhang, Q., Niu, L., Ivaska, A., Covalent Functionalization of Chemically Converted Graphene Sheets via Silane and Its Reinforcement, Journal of Materials Chemistry, 2009, 19, 4632-4638.
21. Kakaei, K., One-Pot Electrochemical Synthesis of Graphene by the Exfoliation of Graphite Powder in Sodium Dodecyl Sulfate and Its Decoration with Platinum Nanoparticles for Methanol Oxidation, Carbon, 2013, 51, 195-201.
22.   Chen, J., Yao, B., Li, C., Shi, G., An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide, Carbon, 2013, 64, 225-229.
23.   Zeng, P., Ran, R., Chen, Z., Zhou, W., Gu, H., Shao, Z., Liu, S., Efficient Stabilization of Cubic Perovskite SrCoO3-δ by B-Site Low Concentration Scandium Doping Combined with Sol-gel Synthesis, Journal of Alloys and Compounds, 2008, 455 (1-2), 465-470.
24.  Kakaei, K., Rahimi, A., Husseindoost, S., Hamidi, M., Javan, H., Balavandi, A., Fabrication of Pt-CeO2 Nanoparticles Supported Sulfonated Reduced Graphene Oxide as an Efficient Electrocatalyst for Ethanol Oxidation, International Journal of Hydrogen Energy, 2016, 41 (6), 3861-3869.
25.  Zhang, X., Zhang,  B., Liu, D.,   Qiao, J.,  One-Pot Synthesis of Ternary Alloy CuFePt Nanoparticles Anchored on Reduced Graphene Oxide and Their Enhanced Electrocatalytic Activity for Both Methanol and Formic Acid Oxidation Reactions, Electrochimica Acta, 2015, 177, 93-99.
26.   Shafaei Douk, A., Saravani, H., Noroozifar, M., One-Pot Synthesis of Ultrasmall Pt-Ag Nanoparticles Decorated on Graphene as a High-Performance Catalyst toward Methanol Oxidation, International Journal of Hydrogen Energy, 2018, 43 (16), 7946-7955.
27. Ekrami-Kakhki,  M.S.,  Khorasani-Motlagh,  M., Noroozifar, M., Electrochemical Investigation of Pd Nanoparticles and MWCNTs Supported Pd Nanoparticles-Coated Electrodes for Alcohols (C1–C3) Oxidation in Fuel Cells, Journal of Applied Electrochemistry, 2014, 44 (2), 233-243.
28.   Wang, Y., Yang, J., Sun, S., Wang, L., Guo, T., Zhang, D., Xue, Z., Zhou, X., PtNi Nanoparticles Supported on Electrochemically Reduced Porous Graphene Oxide for Methanol Oxidation Reaction, Chemical Physics Letters, 2019, 730, 575-581.
29. Seger, B., Kamat, P.V., Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells, The Journal of Physical Chemistry C, 2009, 113 (19), 7990–7995.
30.  Liu, H., Yang, D., Bao, Y., Yu, X., Feng, L., One-Step Efficiently Coupling Ultrafine Pt–Ni2P Nanoparticles as Robust Catalysts for Methanol and Ethanol Electro-Oxidation in Fuel Cells Reaction, Journal of Power Sources, 2019, 434, 226754-226762.
31.   Ding, K., Jia, Z., Wang, Q., He, X., Tian, N., Tong, R., Wang, X., Electrochemical Behavior of the Self-Assembled Membrane Formed by Calmodulin (CaM) on a Au Substrate, Journal of Electroanalytical Chemistry, 2001, 513 (1), 67-71.
32.  Hao, M., Liu,  X., Feng, M., Zhang,  P.,  Wang, G., Generating Power from Cellulose in an Alkaline Fuel Cell Enhanced by Methyl Viologen as an Electron-Transfer Catalyst, Journal of Power Sources, 2014, 251, 222-228.
33.  Zhang, K., Chen, X., Wang, L.,  Zhang, D.,  Xue, Z., Zhou, X., Lu, X., Pt-Pd Nanoparticles Supported on Sulfonated Nitrogen Sulfur co-Doped Graphene for Methanol Electro-Oxidation, International Journal of Hydrogen Energy, 2018, 43 (33), 15931-15940.
34. Eshghi, A., kheirmand, M., Sabzehmeidani, M.M., Platinum-Iron Nanoparticles Supported on Reduced Graphene Oxide as an Improved Catalyst for Methanol Electrooxidation, International Journal of Hydrogen Energy, 2018, 43 (12), 6107-6116.
35.   Zhao, Y., Wang, R., Han, Z., Li, C., Wang, Y., Chi, B., Li, J., Wang, X., Electrooxidation of Methanol and Ethanol in Acidic Medium Using a Platinum Electrode Modified with Lanthanum-Doped Tantalum Oxide Film, Electrochim Acta, 2015, 151, 544-551.
36.  Ekrami-Kakhki, M.S.,  Naeimi, A., Donyagard, F., Pt Nanoparticles Supported on a Novel Electrospun Polyvinyl Alcohol-CuO-Co3O4/Chitosan Based on Sesbania Sesban Plant as an Electrocatalyst for Direct Methanol Fuel Cells, International Journal of Hydrogen Energy, 2019, 44, 1671-1685.
37.  Zhang, X.,  Zhang,  B., Liu, D.,  Qiao, J.,  One-Pot Synthesis of Ternary Alloy CuFePt Nanoparticles Anchored on Reduced Graphene Oxide and Their Enhanced Electrocatalytic Activity for Both Methanol and Formic Acid Oxidation Reactions, Electrochimica Acta, 2015, 177, 93-99.