تحلیل تجربی نظری استحکام برشی نانوکامپوزیت های Al-6061/Gr تولید شده به روش متالورژی پودر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی و علم مواد، دانشگاه صنعتی شیراز، شیراز، ایران

2 دانشکده مهندسی متالورژی و مواد، پردیس دانشکده های فنی، دانشگاه تهران، تهران، ایران

10.30501/jamt.2019.93228

چکیده

در این تحقیق نانوکامپوزیت های Al-6061/Gr با زمینه نانوساختار و مقادیر مختلف میکروذرات گرافیت با روش متالورژی پودر (P/M) و با استفاده از آسیاکاری مکانیکی، پرس سرد و اکستروژن داغ تولید شدند. با توجه به محدودیت در مقدار نانوکامپوزیت های تولید شده و عدم امکان ساخت نمونه های استاندارد کشش، جهت بررسی خواص مکانیکی این مواد از آزمون سنبه برشی استفاده شد. نتایج XRD و SEM نشانگر توزیع یکنواخت ذرات گرافیت در زمینه نانوساختار آلومینیم بود. نتایج سختی سنجی نشان دادند که با افزایش درصد گرافیت سختی کاهش یافته است. نتایج آزمون سنبه برشی در دمای محیط نشان دادند که با ریز کردن ساختار دانه افزایش قابل توجهی در تنش تسلیم برشی و تنش برشی نهایی آلیاژ Al-6061 بدست می آید اما افزودن گرافیت موجب کاهش استحکام برشی و انعطاف پذیری نانوکامپوزیت Al/Gr می شود. استحکام بخشی هال-پچ را می توان به عنوان مکانیزم اصلی موثر بر استحکام بخشی برشی این کامپوزیت ها دانست.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical and experimental investigations on shear strength of Al 6061/Gr nanocomposites produced by powder metallurgy

نویسندگان [English]

  • Sareh Mosleh-Shirazi 1
  • Farshad Akhlaghi 2
1 Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran.
2 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
چکیده [English]

In the present study, Al 6061/Gr nanocomposites with a nanocrystalline matrix structure containing different amounts of graphite micro-particles were synthesized via Powder Metallurgy (P/M) method through mechanical milling, cold pressing and hot extrusion. Due to the limited quantity of the produced nano-composites and impossibility of making standard tensile test specimens, a shear punch test setup was used for evaluation of the mechanical properties of these materials. The results of XRD and SEM studies revealed that Gr particles were uniformly distributed in the nanostructured Al matrix. Hardness measurements showed that increasing the volume fraction of Gr resulted in decreased hardness of Al/Gr nanocomposites. The results of shear punch tests at room temperature revealed significant higher shear yield stress and ultimate shear strength by decreasing the grain size of Al-6061. However, Gr addition deteriorated the shear strength and ductility of Al/Gr nanocomposites. These observations confirmed that the Hall-petch mechanism was the major strengthening mechanism for these nanocomposites.

کلیدواژه‌ها [English]

  • Nanostructure
  • Powder Metallurgy
  • Nanocomposite
  • Shear strength
.      Dursun,  T.,   Soutis, C.,  Recent developments in advanced aircraft aluminium alloys, Materials and Design, 2014, 56, 862-871.

2.      Mosleh-Shirazi, S., Akhlaghi, F.,  Li, D.Y., Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites,  Transactions of Nonferrous Metals Society of China, 2016, 26, 1801-1808.

3.   Liu, Y.,  Liu, M.,  Chen, X., et al., Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion, Scripta Materialia, 2019, 159, 137–141.

4.    Shanmugasundaram, T., Heilmaier, M., Murty, B.S., Subramanya Sarma, V., On the Hall–Petch relationship in a nanostructured Al–Cu alloy, Materials Science and Engineering A, 2010, 527, 7821–7825.

5.­­   Akhlaghi, F., Pelaseyyed, S.A., Characterization of aluminum/graphite particulate composites synthesized using a novel method termed ‘‘in situ powder metallurgy’’, Materials Science and Engineering A, 2004, 385, 258–266.

6.      Sharma, P., Sharma, S., Kumar Garg, R., et al., Effect of Graphite Content on Mechanical Properties and Friction Coefficient of Reinforced Aluminum Composites, Powder Metallurgy and Metal Ceramics, 2017, 56 (5-6), 264-272.

7.       Akhlaghi, F., Zare-Bidaki, A., Influence of Graphite Content on the Dry Sliding and Oil Impregnated Sliding Wear Behavior of Al 2024-Graphite Composites Produced by in Situ Powder Metallurgy Method, Wear, 2009, 266, 37–45.

8.       Das, S., Parasad,  S. V.,  Ramachandran,  T.R., Tribology of Al-Si alloy- graphite composites: triboinduced graphite films and the role of silicon morphology, Materials Science and Engineering A, 1991, 138, 123- 132.

9.  Abdizadeh, H., Ebrahimifard, R., Baghchesara, M.A., Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study, Composites: Part B, 2014, 56, 217–221.

10.      Akhlaghi, F., Mosleh-Shirazi, S., Effect of SiC manoparticles content and milling time on the characteristics of Al/SiC nanocomposite powders produced via mechanical milling, Advanced Materials Research, 2014, 829, 505–509.

11.    Alam, S.N., Kumar, L., Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets, Materials Science & Engineering A, 2016, 667, 16–32.

12.   Mahmudi, R., Mohammadi, R., Effect of gauge length on uniaxial deformation-energy components of copper and brass sheets, Journal of Materials Processing Technology, 2002, 121, 185–190.

13.  Geranmayeh, A.R., Mahmudi,R.,Kangooie, M., High-temperature shear strength of lead-free Sn–Sb–Ag/Al2O3 composite solder, Materials Science and Engineering A, 2011, 528, 3967–3972.

14.  Guduru, R.K.,  Wong, P.Z., Darling,  K.A.,  et al., Determination of activation volume in nanocrystalline Cu using the Shear Punch Test, Advanced Engineering Materials, 2007, 9, 855–859.

15.     Mahmudi, R., Sadeghi, M., Correlation between shear punch and tensile strength for low-carbon steel and stainless steel sheets, Journal of Materials Engineering and Performance, 2013, 22, 433-438.

16.    Barekar, N., Tzamtzis, S., Dhindaw, B.K., et al., Processing of Aluminum-Graphite Particulate Metal Matrix Composites by Advanced Shear Technology, Journal of Materials Engineering and Performance, 2009, 18, 1230–1240.

17.    Mahdavi, S., Akhlaghi, F., Fabrication and characteristics of Al6061/SiC/Gr hybrid composites processed by in situ powder metallurgy method, Journal of Composite Materials, 2012, 47, 437–447.

18.  Meignanamoorthy,  M., Ravichandran, M.,  Synthesis, properties and microstructure of sintered and hot extruded boron carbide reinforced AA8079 (Al-Cu-Fe-Si-Zn) matrix composites, Materials Research Express, 2018, 5, 116508.

19.    Leng, J., Wu, G., Zhou, Q., et al., Mechanical properties of Al/SiC/Gr composites fabricated by squeeze casting technology, Scripta Materialia, 2008, 59, 619–622.

20.  Zhou, C., Ji, G., Chen, Z., et al., Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications, Materials and Design, 2014, 63, 719–728.

21.   Mosleh-Shirazi, S., Hua, G., Akhlaghi, F., et al., Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite”, Scientific Reports – Nature, 2015, 5(18154), 1-6.

22.   Carreño-Gallardo, C., Estrada-Guel, I., López-Meléndez, C., et al., B4C Particles Reinforced Al2024 Composites via Mechanical Milling, Metals, 2018, 8(8), 647.

23.    Chandrasekhar, S.B., Sudhakara Sarma, S., Ramakrishna, M., et al., Microstructure and properties of hot extruded Cu–1 wt% Al2O3 nano-composites synthesized by various techniques, Materials Science and Engineering A, 2014, 591, 46–53.

24.   Zhang, D.L., Processing of advanced materials using high-energy mechanical milling, Progress in Materials Science, 2004, 49, 537–560.

25.  Arsenault, R.J., Fishman, S., Taya, M., Deformation and fracture behavior of metal-ceramic matrix composite materials, Progress in Materials Science, 1994, 38, 1-157.

26.   Shi, N., Arsenault, R.J., Plastic flow in SiC/A1 composites-strengthening and ductility, Annual Review of Materials Science, 1994, 24, 321-357.

27.  Zhang, Z.,  Chen,  D.L.,  Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Scripta Materialia, 2006, 54, 1321-1326.

28.    Tang, F., Anderson, I.E., Gnaupel-Herold, T., et al., Pure Al matrix composites produced by vacuum hot pressing: tensile properties and strengthening mechanisms, Materials Science and Engineering A, 2004, 383, 362-373.

29.  Hardbound, A.C.R., Properties and selection: nonferrous alloys and special purpose materials, vol 2. ASM, Materials Park, 2001.

30.     Lee, S.M.,  Kang,  D.S.,  Roh, J.S.,  Bulk graphite: materials and manufacturing process, Carbon Letters, 2015,16(3), 135-146.

31.  Arsenault, R.J., Shi, N., Dislocation generation due to differences between the coefficients of thermal expansion, Materials Science and Engineering, 1986, 81, 175-187.

32.   Alizadeh, M., Akbaribeni, H.,  Strength prediction of the ARBed Al/Al2O3/B4C nano-composites using Orowan model, Materials Research Bulletin, 2014, 59, 290-294.