نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه ملایر، ملایر، ایران

چکیده

در این تحقیق، نانو­ذرات هگزاسیانوفرات منگنز (MnHCF) توسط روش رسوب­نشانی الکتروشیمیایی تحت جریان ثابت 100 میکرو­آمپر پالسی (5/0 ثانیه قطع جریان و 5/0 ثانیه وصل جریان) بر روی بستر گرافیتی و در دمای اتاق لایه ­نشانی شد. الکترود تهیه شده با استفاده از آنالیز پراش اشعه X ((XRD و میکروسکوپ الکترونی روبشی نشر میدانی (FE-SEM) مشخصه ­یابی شد. کارایی الکتروشیمیایی الکترود بدون چسب MnHCF تهیه شده به عنوان الکترود ابرخازنی با استفاده از آزمون­های ولتامتری چرخه ­ای و شارژ/ تخلیه جریان ثابت در محلول 5/0 مولار سولفات سدیم مورد بررسی قرار گرفت. نتایج آزمون­ های الکتروشیمیایی نشان دادند که الکترود تهیه شده دارای ظرفیت ویژه بالای F g-1 367 در نرخ نخلیه A g-1 1، توان جریان­ دهی مناسب و ابقای ظرفیت خوب 8/88% پس از 1000 چرخه می ­باشد که نشان­ دهنده کارایی ذخیره ­سازی انرژی بالای این الکترود است. 

کلیدواژه‌ها

عنوان مقاله [English]

Electrochemical Deposition of Manganese Hexacyanoferrate Nanoparticles on a Graphite Substrate for Supercapacitor Application

نویسندگان [English]

  • Mahshid Faryabi
  • Mahdi Kazazi

Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Iran

چکیده [English]

In this research, manganese hexacyanoferrate nanoparticles were deposited on a graphite substrate via electrochemical deposition method at a pulse constant current of 100 μA (0.5 s on and 0.5 s off) and at room temperature. The as-prepared electrode was characterized using X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). Electrochemical performance of the binder-free MnHCF electrode as supercapacitor electrode was investigated using cyclic voltammetry and galvanostat charge /discharge measurements in solution of 0.5 M sodium sulfate. The results of electrochemical tests showed that the prepared electrode possessed a high specific capacitance of 367 F g-1 at a current density of 1 A g-1, an appropriate rate capability and good capacitance retention of 88.8% after 1,000 cycles, indicating its high energy storage performance.

کلیدواژه‌ها [English]

  • Electrochemical Deposition
  • Manganese Hexacyanoferrate
  • Electrochemical Performance
  1. Wang H., Feng H.B., Li J.H., Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage, Small, 2014, 11 (10), 2165-2179.
  2. Kazazi M., Effect of electrodeposition current density on the morphological and pseudocapacitance characteristics of porous nano-spherical MnO2 electrode, Ceramics International, 2018, 44 (9), 10863-10870.
  3. Chen K.F., Song S.Y., Liu F., Xue D.F., Structural design of graphene for use in electrochemical energy storage devices, Chemical Society Reviwes, 2015, 44 (17), 6230-6257.
  4. Conway B.E., Electrochemical Capacitors: Scientific Fundamentals and Technology Applications, Kluwer Academic/Plenum Publishers, 1999 Springer Science+Business Media New York, 1999.
  5. Yan J., Wang Q., Wei T., Fan Z., Recent advances in design and fabrication of Electrochemical supercapacitors with high energy densities, Advanced Energy Materials, 2014, 4 (4), 157-164.
  6. Candelaria S.L., Shao Y.Y., Zhou W., Li X.L., Xiao J., Zhang J.G., Wang Y., Liu J., Li J.H., Cao G.Z., Nanostructured carbon for energy storage and conversion, Nano Energy, 2012, 1 (2), 195-220.
  7. Kazazi M., Sedighi A.R., Mokhtari M.A., Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes, Applied Surface Science, 2018, 441 (1), 251-257.
  8. Yang Z.Y., Zhao Y.F., Xiao Q.Q., Zhang Y.X., Jing L., Yan Y.M., Sun K.N., Controllable growth of CNTs on graphene as high-performance electrodematerial for supercapacitors, ACS Applied Materails & Interfaces, 2014, 6 (11), 8497-8504.
  9. Chen D., Feng H.B., Li J.H., Graphene oxide: preparation, functionalization, and electrochemical applications, Chemical Reviews, 2012, 112 (11), 6027-6032.
  10.    Eftekhari A., Li L., Yang Y., Polyaniline supercapacitors, Journal of Power Sources, 2017, 347 (1), 86-107.
  11.    Afzal A., Abuilaiwi F.A., Habib A., Awais M., Waje S.B., Atieh M.A., Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges, Journal of Power Sources, 2017, 352 (1), 174-186.
  12.    Xia X.H., Zhang Y.Q., Chao D.L., Guan C., Zhang Y.J., Li L., Ge X., Bacho I.M.,Tu J.P., Fan H.J., Solution synthesis of metal oxides for electrochemical energy storage applications, Nanoscale, 2014, 6 (10), 5008-5048.
  13.    Kazazi M., Facile preparation of nanoflake-structured nickel oxide/carbon nanotube composite films by electrophoretic deposition as binder-free electrodes for high-performance pseudocapacitors, Current Applied Physics, 2017, 17 (2), 240-248.
  14.    Wang J.G., Kang F.Y., Wei B.Q., Engineering of MnO2-based nanocomposites for high-performance supercapacitors, Progress in Material Science, 2015, 74 (1), 51-124.
  15.    Yu Z.N., Tetard L., Zhai L., Thomas J.Y., Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy& Environmental Science, 2015, 8 (3), 702-730.
  16.    Buser H.J., Schwarzenbach D., Petter W., Cheminform abstract: the crystalstructure of Prussian blue-Fe4(Fe(CN)6)3. xH2O, Inorganic Chemistry, 1977, 16 (11), 2704-2710.
  17.    McCargar J.W., Neff V.D., Thermodynamics of mixed-valence intercalation reactions: the electrochemical reduction of Prussian blue, Journal of Physical Chemistry, 1988, 92 (12), 3598-3604.
  18.    Kong B., Selomulya C., Zheng G., Zhao D., New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications, Chemical Society Reviwes, 2015, 44 (22), 7997-8018.
  19.    Kulesza P.J., Zamponi S., Malik M.A., Berrettoni M., Wolkiewicz A., Marassi R., Spectroelectrochemical characterization of cobalt hexacyanoferrate films in potassium salt electrolyte, Electrochimica Acta,1998, 43 (8), 919-923.
  20.    Kulesza P.J., Zamponi S., Malik M.A., Berrettoni M., Wolkiewicz A., Marassi R., Electrochemical charging, counter cation accommodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate, Journal of Physical Chemistry, 1998, 102(11), 1870-1876.
  21.    Miecznikowski K., Steplowska M.C.W., Malik M.A., Kulesza P.J., Microelectrochemical electronic effects in two-layer structures of distinct Prussianblue type metal hexacyanoferrates, Journal of Solid State Electrochemistry, 2004, 8 (10), 868-875.
  22.    Kulesza P.J., Malik M.A., Skorek J., Miecznikowski K., Zamponi S., Berrettoni M., Giorgetti M., Marass R., Hybrid metal cyanometallates electrochemical charging and spectrochemical identity of heteronuclear nickel/cobalt hexacyanoferrate, Journal of Electrochemical Society, 1999, 146 (10), 3757-3761.
  23.    Wu X.Y., Wu C.H., Wei C.X., Hu L., Qian J.F., Cao Y.L., Ai X.P., Wang J.L., Yang H.X., Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects assuperior cathode material for sodium-ion batteries, ACS Applied Materials & Interfaces, 2016, 8 (8), 5393-5399.
  24.    Ricci F., Palleschi G., Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes, Biosensors and Bioelectronics, 2005, 21 (3), 389-407.
  25.    Wang Y., Chen Q.W., Dual-layer-structured nickel hexacyanoferrate/MnO2 composite as a high-energy supercapacitive material based on the complementarity and interlayer concentration enhancement effect, ACS Applied Material & Interfaces, 2014, 6 (9), 6196-6201.
  26.    Ghasemi S., Hosseini S.R., P. Asen, Preparation of graphene/nickel-iron hexacyanoferrate coordination polymer nanocomposite for electrochemical energy storage, Electrochimical Acta, 2015, 160 (1 ), 337-346.
  27.    Chen J., Huang K., Liu S., Hu X., Electrochemical supercapacitor behavior ofNi3(Fe(CN)6)2(H2O) nanoparticles, Journal of  Power Sources, 2009, 186 (2), 565-569.
  28.    Chen J., Huang K., Liu S., Insoluble metal hexacyanoferrates as supercapacitor electrodes, Electrochemistry Communication, 2008, 10 (12), 1851-1855.
  29.    Moritomo Y., Urase S., Shibata T., Enhanced battery performance in manganese hexacyanoferrate by partial substitution, Electrochimica Acta, 2016, 210 (1 ), 963-969.
  30.    Pang H., Zhang Y.Z., Cheng T., Lai W.Y., Huang W., Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors, Nanoscale, 2015, 7 (38), 16012-16019.
  31.    Jiang Y.Y, Zhang X.D., Shan C.S., Hua S.C., Zhang Q.X., Bai X.X., Dan L., Niu L., Functionalization of graphene with electrodeposited Prussian blue towards amperometric sensing application, Talanta, 2011, 85 (1), 76-81.

32.Xu Y.X., Zheng S.S., Tang H.F., Guo X.T., Xue H.G., Pang H., Prussian blue and its derivatives as electrode materials for electrochemical energy storage, EnergyStorage Materials, 2017, 9 (1 ), 11-30.

33.Lee H.W., Wang R.Y., Pasta M., Lee S.W., Liu N., Cui Y., Manganese hexacyanomanganate open framework as a high-capacity positive electrodematerial for sodium-ion batteries, Nature Communications, 2014, 5 (1 ), 5280-5286.

34.Tokoro H., Matsuda T., Hashimoto K., Ohkoshi S.I., Optical switching between bistable phases in rubidium manganese hexacyanoferrate at room temperature, Journal of Applied Physics, 2005, 97 (10), 1-3.

35.WangY., Yang Y., Hao X., Zhang X., Zhang Z., Ma G., pH-controlled morphological structure and electrochemical performances of polyaniline/nickel hexacyanoferrate nanogranules during electrochemical deposition, Journal of  Solid State Electrochemistry, 2014, 18 (10), 2885-2892.

36.Lisowska-Oleksiak A., Nowak A.P., Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors, Journal of Power Sources, 2007, 173 (2), 829-836.

37.Wang K., Huang J.Y., Wei ZX., Conducting polyaniline nanowire arrays for high performance supercapacitors, Journal of Physics Chemistry, 2010, 114 (17), 8062-8067.