بهبود خواص مکانیکی آلومینیوم خالص تجاری توسط فرایند اصطکاکی اغتشاشی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک دانشکده فنی و مهندسی، دانشگاه مراغه

2 دانشجوی دکتری، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران

3 دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این پژوهش، نمونه­های آلومینیوم خالص 1050 بطور موفقیت­آمیزی تحت فرایند اصطکاکی اغتشاشی تا شش پاس قرار گرفته و سپس، خواص مکانیکی، الکتریکی و ریزساختاری نمونه­های فراوری شده بدست آمده و با نمونه اولیه مقایسه گردیده است. نتایج حاکی از افزایش استحکام تسلیم، استحکام نهایی و سختی نمونه در اثر اعمال این فرایند می­باشد. مشخص گردید، میزان بهبود خواص مکانیکی در پاس­های بعدی چشمگیر نیست و نیز می­توان گفت که با دور شدن از مرکز، مقدار میکروسختی بتدریج و با شیب ملایم کاهش می­یابد. اگرچه شکل­پذیری نمونه بعد از اعمال اولین پاس کاهش می­یابد افزایش تعداد پاس­ها، مقدار شکل­پذیری نمونه را در مقایسه با حالت تک پاسه بهبود می­دهد. نتایج ریزساختاری نشان داد که با انجام یک پاس از فرایند مذکور، میکروساختار بشدت تغییر پیدا کرده و میزان مرزهای بزرگ زاویه بشدت افت پیدا می­کند که می­تواند دلیل اصلی کاهش هدایت الکتریکی نمونه یک پاسه در مقایسه با نمونه اولیه باشد. افزایش تعداد پاس­ها موجب افزایش چگالی نابجایی­ها، تبدیل مرز­های کوچک به بزرگ زاویه و تقاطع بالای میکروباند­های برشی بعد از اعمال هر پاس می­گردد که موجب بهبود شکل­پذیری نمونه و افزایش هدایت الکتریکی آن در مقایسه با نمونه تک پاسه می­شود. لذا، این فرایند قابلیت لازم برای بهبود همزمان خواص مکانیکی و حفظ خواص الکتریکی را داراست.

کلیدواژه‌ها


عنوان مقاله [English]

Enhanced mechanical properties of pure aluminum by friction stir processing

نویسندگان [English]

  • M Ebrahimi 1
  • SHokoh Attarilar 2
  • mohammad Taghi Salehi 3
1 Department of Mechanical Engineering, Faculty of Engineering, University of Maragheh
2 School of Metallurgy and Materials Engineering, Iran University of Science and Technology
چکیده [English]

In this work, commercial pure aluminum was subjected to friction stir processing (FSP) up to six passes, then, mechanical properties, electrical conductivity, and microstructure analysis of the processed samples were compared with the initial condition. Better yield strength, ultimate tensile strength, and hardness are achieved after imposing the process. Also, strengthening rate is reduced at the subsequent passes. It was found that hardness magnitude is decreased mildly by getting away from the center. Although material formability is reduced after the first pass, it is grown a little by adding the pass number. The microstructure analysis indicated that application of one pass FSP changes considerably grain size of the annealed aluminum and leads to extreme decrease of the high angle grain boundaries density which plays the main role in the reduction of electrical conductivity. Addition of FSP pass number leads to increment of dislocations density, transformation of low-angle to high-angle grain boundaries, and the further intersection of shear microbands, causing improvement of sample formability and electrical conductivity compared to the first pass. Therefore, this process has the capability for fabrication of pure aluminum with improved mechanical properties and acceptable electrical conductivity.

کلیدواژه‌ها [English]

  • Friction Stir Processing
  • Commercial pure aluminum
  • Mechanical properties
  • Electrical conductivity
  • Microstructure analysis

[1]          R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci., vol. 51, no. 7, pp. 881–981, Sep. 2006.

[2]          F. Djavanroodi and M. Ebrahimi, “Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation,” Mater. Sci. Eng. A, vol. 527, no. 4–5, pp. 1230–1235, Feb. 2010.

[3]          A. Zhilyaev and T. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci., vol. 53, no. 6, pp. 893–979, Aug. 2008.

[4]          Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, “Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process,” Scr. Mater., vol. 39, no. 9, pp. 1221–1227, Oct. 1998.

[5]          M. Ebrahimi, S. Attarilar, F. Djavanroodi, C. Gode, and H. S. Kim, “Wear properties of brass samples subjected to constrained groove pressing process,” Mater. Des., vol. 63, pp. 531–537, Nov. 2014.

[6]          M. Ebrahimi, H. Gholipour, and F. Djavanroodi, “A study on the capability of equal channel forward extrusion process,” Mater. Sci. Eng. A, vol. 650, pp. 1–7, 2015.

[7]          Z. Y. Ma, “Friction Stir Processing Technology: A Review,” Metall. Mater. Trans. A, vol. 39, no. 3, pp. 642–658, 2008.

[8]          R. S. Mishra, M. W. Mahoney, S. X. Mcfadden, N. A. Mara, and A. K. Mukherjee, “High strain rate superplasticity in a friction stir processed 7075 Al alloy,” Scr. mater, vol. 42, pp. 163–168, 2000.

[9]          N. Saito, I. Shigematsu, T. Komaya, G. Yamauchi, and M. Nakamura, “Grain refinement of 1050 aluminum alloys by friction stir processing,” J. Mater. Sci. Lett., vol. 20, no. 20, pp. 1913–1915, 2001.

[10]        Z. Y. Ma, R. S. Mishra, M. W. Mahoney, and R. Grimes, “High strain rate superplasticity in friction stir processed Al-Mg-Zr alloy,” Mater. Sci. Eng. A, vol. 351, no. 1–2, pp. 148–153, 2003.

[11]        C. G. Rhodes, M. W. Mahoney, W. H. Bingel, and M. Calabrese, “Fine-grain evolution in friction-stir processed 7050 aluminum,” Scr. Mater., vol. 48, no. 10, pp. 1451–1455, 2003.

[12]        V. Kulitskiy, S. Malopheyev, S. Mironov, and R. Kaibyshev, “Grain refinement in an Al-Mg-Sc alloy: Equal channel angular pressing versus friction-stir processing,” Mater. Sci. Eng. A, vol. 674, pp. 480–490, 2016.

[13]        N. Nadammal, S. V. Kailas, and S. Suwas, “A bottom-up approach for optimization of friction stir processing parameters; a study on aluminium 2024-T3 alloy,” Mater. Des., vol. 65, pp. 127–138, 2015.

[14]        R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” vol. 50, pp. 1–78, 2005.

[15]        J.-Q. Su, T. W. Nelson, and C. J. Sterling, “Microstructure evolution during FSW/FSP of high strength aluminum alloys,” Mater. Sci. Eng. A, vol. 405, no. 1–2, pp. 277–286, 2005.

[16]        I. Charit and R. S. Mishra, “High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing,” Mater. Sci. Eng. A, vol. 359, no. 1–2, pp. 290–296, 2003.

[17]        M. Eddahbi, O. A. Ruano, and T. R. McNelley, “The evolution of grain boundary character during superplastic deformation of an Al-6 pct Cu-0.4 pct Zr alloy,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 32, no. 5, pp. 1093–1102, 2001.

[18]        T. R. McNelley and M. E. McMahon, “Microtexture and grain boundary evolution during microstructural refinement processes in SUPRAL 2004,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 28, no. 9, pp. 1879–1887, 1997.

[19]        H. Rhee et al., “Mechanical properties of novel aluminum metal matrix metallic composites: Application to overhead conductors,” Mater. Des., vol. 88, pp. 16–21, 2015.

[20]        R. Z. Valiev, M. Murashkin, and I. Sabirov, “A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity,” Scr. Mater., vol. 76, pp. 13–16, 2014.

[21]        C. H. Liu, J. Chen, Y. X. Lai, D. H. Zhu, Y. Gu, and J. H. Chen, “Enhancing electrical conductivity and strength in Al alloys by modification of conventional thermo-mechanical process,” Mater. Des., vol. 87, pp. 1–5, 2015.

[22]        M. Y. Murashkin, I. Sabirov, V. U. Kazykhanov, E. V. Bobruk, A. A. Dubravina, and R. Z. Valiev, “Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC,” J. Mater. Sci., vol. 48, no. 13, pp. 4501–4509, 2013.

[23]        J. M. Milani and T. Saeid, “Friction stir welding of commercially pure aluminum foams manufactured by accumulative roll-bonding process,” pp. 35–42, 2014.

[24]        Y. Kwon, N. Saito, and I. Shigematsu, “Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy,” J. Mater. Sci. Lett., pp. 1473–1476, 2002.

[25]        D. Yadav and R. Bauri, “Effect of friction stir processing on microstructure and mechanical properties of aluminium,” Mater. Sci. Eng. A, vol. 539, pp. 85–92, 2012.

[26]        C. I. Chang, C. J. Lee, and J. C. Huang, “Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys,” Scr. Mater., vol. 51, no. 6, pp. 509–514, 2004.

[27]        F. Djavanroodi, M. Ebrahimi, B. Rajabifar, and S. Akramizadeh, “Fatigue design factors for ECAPed materials,” Mater. Sci. Eng. A, vol. 528, no. 2, pp. 745–750, Dec. 2010.

[28]        Z. Y. Ma, R. S. Mishra, and M. W. Mahoney, “Superplastic deformation behaviour of friction stir processed 7075Al alloy,” Acta Mater., vol. 50, pp. 4419–4430, 2002.

[29]        A. H. Feng and Z. Y. Ma, “Enhanced mechanical properties of Mg-Al-Zn cast alloy via friction stir processing,” Scr. Mater., vol. 56, no. 5, pp. 397–400, 2007.

[30]        K. Nakata, Y. G. Kim, H. Fujii, T. Tsumura, and T. Komazaki, “Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing,” Mater. Sci. Eng. A, vol. 437, no. 2, pp. 274–280, 2006.

[31]        S. Dongare, “A Mechanical Testing Methodology for Metal Additive Manufacturing Processes,” Int. Solid Free. Fabr. Symp., pp. 224–243, 2014.

[32]        I. Sabirov, M. Y. Murashkin, and R. Z. Valiev, “Materials Science & Engineering A Nanostructured aluminium alloys produced by severe plastic deformation : New horizons in development,” Mater. Sci. Eng. A, vol. 560, pp. 1–24, 2013.

[33]        C. S. Çetinarslan, “Effect of cold plastic deformation on electrical conductivity of various materials,” Mater. Des., vol. 30, no. 3, pp. 671–673, 2009.

[34]        S. A. Hosseini and H. D. Manesh, “High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process,” Mater. Des., vol. 30, no. 8, pp. 2911–2918, 2009.

[35]        M. Shamsborhan and M. Ebrahimi, “Production of nanostructure copper by planar twist channel angular extrusion process,” J. Alloys Compd., vol. 682, pp. 552–556, 2016.

[36]        Y. M. Wang and E. Ma, “Three strategies to achieve uniform tensile deformation in a nanostructured metal,” Acta Mater., vol. 52, no. 6, pp. 1699–1709, 2004.

[37]        B. Hwang et al., “Dynamic Deformation Behavior of UltraFine-Grained Low-Carbon Steels Fabricated by Equal-Channel Angular Pressing,” Metall. Mater. Trans. A, vol. 36, no. February, pp. 389–397, 2005.

[38]        T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Progress in Materials Science Dynamic and post-dynamic recrystallization under hot , cold and severe plastic deformation conditions,” J. Prog. Mater. Sci., vol. 60, pp. 130–207, 2014.

[39]        M. Ebrahimi and M. Shamsborhan, “Monotonic and dynamic mechanical properties of PTCAE aluminum,” J. Alloys Compd., vol. 705, pp. 28–37, 2017.