نویسندگان

1 پژوهشگاه مواد و انرژی، پژوهشکده سرامیک، کرج، ایران.

2 دانشگاه شهید بهشتی، تهران، ایران

3 سازمان پژوهشهای علمی و صنعتی ایران.

چکیده

امروزه باتری‌های لیتیومی و نیکل- هیدرید فلزی به دلیل ظرفیت ذخیره‌‌سازی بالاترِ انرژی و عدم به‌کارگیری فلزات سنگین و آلاینده محیط‌زیست، بسیار مورد توجه‌اند. در باتری‌های نیکل- هیدرید فلزی، آلیاژ جاذب هیدروژن در الکترودِ منفی با هیدرولیز آب به هیدرید فلز تبدیل می‌گردد. در پژوهشِ حاضر آلیاژ MmNi3.55Co0.75Mn0.4Al0.3 حاوی میش‌متالِ غنی از سریم، با استفاده از روش قوس الکتریکی تحت خلاء سنتز شد. در ادامه، آلیاژ حاصل جهت همگن‌سازی به مدت هفت ساعت در کوره تیوبی و در دمای 900 درجه سانتی‌گراد قرار گرفت. خردایش آلیاژ به دلیل ماهیت ترد آن در یک هاون عقیق انجام شد و آلیاژ خرد شده با اندازه ذراتِ کمتر از 50 میکرون تحت آزمون‌های اشعه ایکس(بررسی ریزساختارساختار)، سیورت (بررسی ظرفیت ذخیره‌سازی هیدروژن) و الکتروشیمی (بررسی میزان انرژی ذخیره شده به صورت برگشت‌پذیر) قرار گرفت. الگوی پراش اشعه ایکس نشان می‌دهد آلیاژ حاصل به‌طور عمده ساختار کریستالوگرافی هگزاگونال با فرمول شیمیایی AB5 دارد. بررسی‌های انجام شده به وسیله دستگاه سیورت نشان می‌دهد، در دمای محیط یک درصد وزنی و در دمای 60 درجه سانتیگراد 6/0 درصد وزنی هیدروژن توسط آلیاژ، قابل ذخیره‌سازی است. هم‌چنین بررسی‌های الکتروشیمیایی به وسیله دستگاه ایویوم (Evium) نیز نشان می‌دهد این آلیاژ به صورت برگشت‌پذیر قابلیت ذخیره‌سازی انرژی به میزان mAh/g 150 را دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Synthesis and Characterization of Cerium rich MmNi3.55Co0.75Mn0.4Al0.3 for Ni-MH battery applications

نویسندگان [English]

  • Mahmoud Kazemzad Asiabi 1
  • Mohammad Daryani Tabrizi 1
  • Mustafa Sadati 2
  • Touradj Ebadzadeh 1
  • Ali Kaflou 3

1 Materials and Energy Research Center, Department of Ceramic, Karaj, Iran.

2 Shahid Beheshti University, Tehran, Iran

3 Iranian Research Organization for Science and Technology, Tehran, Iran.

چکیده [English]

Li-Ion and Ni-MH batteries are the best candidate for Electric Vehicles. Despite higher energy densities of Li-Ion batteries, because of economical reason Ni-MH Batteries are still attractive for scientist. In this investigation Cerium rich MmNi3.55Co0.75Mn0.4Al0.3 has been produced via Vacuum Arc Remelting Process. Phase characterization has shown that the predominant crystallographic phase is Hexagonal type with AB5 chemical formulation. Volumetric Sievert test has shown that the alloy could store 1%wt percent hydrogen at room temperature. Electrochemical analysis with Evium-Stat has shown that the energy density which the alloy can reversibly deliver is about 150 mAh/g.

کلیدواژه‌ها [English]

  • Nickel-Metal Hydride Battery
  • Hydrogen Storage Alloys
  • Mischmetal
  • Vacuum Arc Remelting
  1. Daniel, C. and Besenhard, J.O., eds. Handbook of battery materials, 2(011), Wiley-VCH Verlag & Co. KGaA: Weinheim.
  2. Taniguchi, A., Fujioka, N., Ikoma, M. and Ohta, A., Development of nickel/metal-hydride batteries for EVs and HEVs, Journal of power sources, 100(1) (2001) 117-124.
  3. Conte, M., Prosini, P. and Passerini, S., Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials, Materials Science and Engineering: B, 108(1) (2004) 2-8.
  4. Tarascon, J.-M. and Armand, M., Issues and challenges facing rechargeable lithium batteries, Nature, 414, (2001) 359-367.
  5. Hong, K., The development of hydrogen storage electrode alloys for nickel hydride batteries, Journal of power sources, 96(1) (2001) 85-89.
  6. Young, K. and Nei, J., The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications, Materials, 6(10) (2013) 4574-4608.
  7. Liu, Y., Pan, H., Gao, M., Wang,, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries, Journal of Materials Chemistry, 13 (2011) 4743-4755.
  8. Lakner, J.F., Uribe, F.S. and Steward, S.A., Hydrogen and deuterium sorption by selected rare earth intermetallic compounds at pressures up to 1500 atm, Journal of the Less Common Metals, 72(1) (1980) 87-105.
  9. Ewe, H., Justi, E.W. and Stephan, K., Elektrochemische Speicherung und Oxidation von Wasserstoff mit der intermetallischen Verbindung LaNi5, Energy Conversion, 13(3) (1973) 109-113.
  10. Kuriyama, N., Sakai, T., Miyamura, H., Tanaka, H. and Ishikawa, H., Uehara, I., et al., Hydrogen storage alloys for nickel-metal hydride battery, Vacuum, 47 (1996) 889-892.
  11. Percheron-Guegan, A., et al. Hydrogen electrochemical storage by substituted LaNi5 compounds. in Hydrides for Energy Storage, 1978.
  12. Feng, F., Electrochemical characteristics of metal hydride electrodes for nickel/metal hydride rechargable batteries, Automotive and Materials Engineering, (2002), Windsor: Ontario.
  13. Chartouni, D., Meli, F., Züttel, A., Gross, K. and Schlapbach, L., The influence of cobalt on the electrochemical cycling stability of LaNi5-based hydride forming alloys, Journal of Alloys and Compounds, 241 (1996) 160-166.
  14. Ikowa, M., et al., in European Patent Application. 1987.
  15. Varin, R.A., Czujko, T. and Wronski, Z.S., Nanomaterials for Solid State Hydrogen Storage, (2008), New York: Springer.
  16. Holm, T., Synthesis and characterisation of the nanostructured magnesium-lanthanum-nickel alloys for Ni-metal hydride battery applications, (2012), Norwegian University of Science and Technology: Trondheim.
  17. Ozaki, T., Kanemoto, M., Kakeya, T., Kitano, Y., Kuzuhara, M.., Watada, M., Tanase, S. and Sakai, T., Stacking structures and electrode performances of rare earth–Mg–Ni-based alloys for advanced nickel–metal hydride battery, Journal of Alloys and Compounds, 446 (2007) 620-624.
  18. Fukumoto, Y., Miyamoto, M., Matsuoka, M. and Iwakura, C., Effect of the stoichiometric ratio on electrochemical properties of hydrogen storage alloys for nickel-metal hydride batteries, Electrochimica acta, 40(7) (1995) 845-848.
  19. Kohno, T., Yoshida, H., Kawashima, F., Inaba, T., Sakai, I., Yamamoto, M. and Kanda, M., Hydrogen storage properties of new ternary system alloys: La2MgNi9,La5Mg2Ni23, La3MgNi14, Journal of Alloys and Compounds, 311(2) (2000) L5-L7.
  20. Raju, M., Ananth, M. and Vijayaraghavan, L., Influence of electroless coatings of Cu, Ni–P and Co–P on MmNi25Al0.35Mn0.25Co0.66 alloy used as anodes in NiMH batteries, Journal of Alloys and Compounds, 475(1) (2009) 664-671.
  21. Sakai, T., Yoshinaga, H., Miyamura, H., Kuriyama, N. and Ishikawa, H., Rechargeable hydrogen batteries using rare-earth-based hydrogen storage alloys, Journal of Alloys and Compounds, 180(1-2) (1992) 37-54.