بررسی تأثیر همزمان ذرات SiC نانو و میکرون بر استحکام خمشی و رفتار سینتر بدون فشار کامپوزیت بر پایه دی‌بورید زیرکونیم (ZrB2) تقویت‌شده با نیترید آلومینیوم (AlN)

نویسنده

Materials Science, Malek Ashtar University of Technology

چکیده

در این تحقیق، نانوکامپوزیت ZrB2-SiC به روش سینتر بدون فشار تولید گردید. از پودر AlN در مقیاس میکرون به عنوان افزودنی استفاده شد. به منظور بررسی تأثیر حضور همزمان ذرات SiC نانو و میکرون ابتدا پودر ZrB2 به همراه درصدهای مختلف از SiC نانو و میکرون در آسیاب سیاره‌ای با به مدت دو ساعت با سرعت rpm200 آسیاب شدند. مخلوط حاصل پس از پرس گرم اولیه در دمای oC80 و فشار MPa100 تحت فرآیند پرس ایزواستاتیک سرد (CIP) قرار گرفته و در دمای 2150 درجه سانتی‌گراد سینتر شد. به منظور تعیین نسبت بهینه SiC نانو به میکرون، چگالی نسبی، سختی و چقرمگی نمونه‌ها اندازه‌گیری شد. سپس، ذرات AlN به کامپوزیت ZrB2-SiC اضافه شده و ریزساختار و خواص مکانیکی آن مورد بررسی قرار گرفت. نتایج حاصل شده از تمامی نمونه‌ها در ترکیبات مختلف نشان می‌دهند که با تغییر درصد حجمی SiC نانو از 20 درصد حجمی نانو به 15 درصد نانو و پنج درصد میکرون، کاهش در تخلخل و افزایش در چگالی رخ می‌دهد. با بررسی ریز‌ساختاری و اندازه‌گیری خواص مکانیکی نمونه‌ها بیشترین سختی و چقرمگی شکست نیز، در ترکیب دارای به ترتیب 15 و 5 درصد حجمی SiC نانو و میکرون و با مقادیر Gpa9/15 و Mpa.m1/29/4 مشاهده شد. با افزودن ذرات 5/7 درصد حجمی AlN چگالی به 1/98 درصد و مقادیر سختی و چقرمگی شکست به GPa1/17 و Mpa.m1/27/5 افزایش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation on microstructure, mechanical properties and pressureless sintering behavior of ZrB2-SiCnano/micron composites toughened by AlN

چکیده [English]

In the present paper, ZrB2-SiC nanocomposite was developed by pressureless sintering method. Micro sized AlN powder and SiC powderes at nano and micro-sized scale were used as additive. In order to produce composite samples, the primary powders were milled and blended in planetary ball mill apparatus with rotational speed of 200rpm and then processed using hot pressing (80ᵒC and 100MPa), cold isostatic press and sintering at 2150ᵒC. The values of relative density and porosity of samples were measured to evaluate the effect of presence of micro-sized SiC and SiC nano particles simultaneously on the pressureless sintering behavior of ZrB2-SiC. In order to compare the microstructure and mechanical properties of samples Scanning Electron microscopy (SEM), equipped with EDS spectroscopy, XRD analysis, hardness and toughness tests were used. The results show that as the volume percentage of nano SiC decreases to 15 vol.% and AlN increases to 7.5 vol.% the hardness (17.1 GPa), toughness (5.7 MPa.m1/2) and relative density (98.1%) increase.

کلیدواژه‌ها [English]

  • Ultra high temperature ceramics
  • ZrB2-SiCnano/micron composites
  • Pressureless sintering
  • Mechanical properties
  1. He, Z., Ma, J., Tan, G.E.b., Fabrication and characteristics of alumina–iron functionally graded materials, Journal of Alloys and Compounds, 486 (1-2) (2009) 815-818.

 

  1. EL-Wazery, M.S., EL-Desouky, A.R., A review on functionally graded ceramic-metal materials, Journal of Materials and Environmental Science, 6 (5) (2015) 1369-1376.

 

  1. Udupa, G., S.Shrikantha, R., Gangadharan, K.V., Functionally graded composite materials: An overview, Procedia Materials Science, 5 (2014) 1291-1299.

 

  1. Chmielewski, M., Pietrzak, K., Metal-ceramic functionally graded materials, manufacturing, characterization, application, Bulletin of the Polish Academy of Sciences, 64 (1) (2016) 151-160.

 

  1. Peng, X., Yan, M., Ge, H., Effects of magnetic field gradient on particle distributions of suspension comprised of both magnetic and nonmagnetic particles using two-dimensional monte carlo simulations, Advanced Materials Research, 79-82 (2009) 1301-1304.

 

  1. Szafran, M., Konopka, K., Bobryk, E., Kurzydłowski, K.J., Ceramic matrix composites with gradient concentration of metal particles, Journal of the European Ceramic Society, 27 (2007) 651-654.

 

  1. Kieback, B., Neubrand, A., Riedel, H., Processing techniques for functionally graded materials, Materials Science and Engineering A, 362 (2003) 81-105.

 

  1. Zhang, Z., Li, T., Yue, H., Zhang, J. Li, J., Study on the preparation of Al–Si functionally graded materials using power ultrasonic field, Short Communication, Materials and Design, 30(3) (2009) 851-856.

 

  1. Peng, X., Yan, M. Shi, W., A new approach for the preparation of functionally graded materials via slip casting in a gradient magnetic field, Scripta Materialia, 56(10) (2007) 907-909.

 

  1. Babakhani, A., Zahabi, E. Yavari Mehrabani, H. Fabrication of Fe/Al2O3 composite foam via combination of combustion synthesis and spark plasma sintering techniques, Journal of Alloys and Compounds, 514 (2012) 20- 24.

 

  1. Yeomans, J.A., Ductile Particle Ceramic Matrix Composites-Scientific Curiosities or Engineering Materials?, Journal of the European Ceramic Society, 28(7) (2008) 1543-1550.

 

  1. Trusty, P.A., Yeomans, J.A., The Toughening of Alumina with Iron: Effects of Iron Distribution on Fracture Toughness, Journd of the European Cermic Society, 17(4) (1997) 495-504.

 

  1. Ozieblo, A., Wejrzanowski, T., Konopka, K., Szafran,  M., Kurzydłowski, K.J., Microstructure of Al2O3-Fe FGM obtained by modified slip-casting method, Materials Science Forum, 492-493 (2005) 665-672.

 

  1. Mi, Y., Xiaoling, P., Weitang, S., Relation of viscosity and inner structure of suspension under a magnetic field, Journal of Inorganic Materials, 23(4) (2008) 836-840.

 

  1. Mi, Y., Xiaoling, P., Weitang, S., Investigation on relation of viscosity and inner structure of suspension under a magnetic field, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027.

 

  1. Bossis, G., Lançon, P., Meunier, A., Iskakova, L., Kostenko, V., Zubarev, A., Kinetics of internal structures growth in magnetic suspensions, Physica A A, 392(7) (2013) 1567-1576.

 

  1. Aldridge, M. Yeomans, J.A., The thermal shock behaviour of ductile particle toughened alumina composites, Journal of the European Ceramic Society, 19(9) (1998) 1769-1775.

 

  1. Xue, D. S., Huang, Y.L., Ma, Y., Zhou, P.H., Niu, Z.P., Li, F.S., Magnetic properties of pure Fe-Al2O3 nanocomposites, Journal of Materials Science Letters, 22(24) (2003) 1817 – 1820.

 

  1. Novak, S., Kalin, M., Lukas, P., Anne, G., Vleugels, J., Van Der Biest, O., The effect of residual stresses in functionally graded alumina–ZTA composites on their wear and friction behavior, Journal of the European Ceramic Society, 27(1) (2007) 151-156.

 

  1. Yodkaew, T., Morakotjinda, M., Tosangthum, N., Coovattanachai, O., Krataitong, R., Siriphol, P., Vetayanugul, B., Chakthin, S., Poolthong, N., Tongsri, R., Sintered Fe-Al2O3 and Fe-SiC Composites, Journal of Metals, Materials and Minerals, 18(1) (2008) 57-61.

 

  1. Suzuki, T.S., Uchikoshi, T., Sakka, Y., Control of texture in alumina by colloidal processing in a strong magnetic field, Science and Technology of Advanced Materials, 7(4) (2006) 356-364.

 

  1. Sakka, Y., Honda, A., Suzuki, T.S., Moriyoshi, Y., Fabrication of oriented β-alumina from porous bodies by slip casting in a high magnetic field, Solid State Ionics, 172(1-4) (2004) 341-347.

 

  1. Suzuki, T.S., Uchikoshi, T., Sakka, Y., Effect of sintering additive on crystallographic orientation in AlN prepared by slip casting in a strong magnetic field, Journal of the European Ceramic Society, 29(12) (2009) 2627-2633.

 

  1. Inoue, K., Sassa, K., Yokogawa, Y., Sakka, Y., Okido, M., Asai, A., Control of crystal orientation of hydroxyapatite by imposition of a high magnetic field, Materials Transactions, 44(6) (2003) 1133-1137.

 

  1. Mott, M., Evans, J.R.G., Zirconia/alumina functionally graded material made by ceramic ink jet printing, Materials Science and Engineering A, 271(1-2) (1999) 344-352.

 

  1. Ruys, A.J., Popov, E.B., Sun, D., Russell, J.J., Murray, C.C.J., Functionally graded electrical/thermal ceramic systems, Journal of the European Ceramic Society, 21(10-11) (2001) 2025-2029.