نویسندگان

پژوهشگاه مواد و انرژی، پژوهشکده سرامیک، کرج، ایران.

چکیده

در این پژوهش کامپوزیت­ های آلومینا-آهن به منظور ایجاد گرادیان ذرات آهن در زمینه آلومینا به روش ریخته ­گری دوغابی تهیه شد. مقدار آهن 5% وزنی انتخاب و برای ایجاد گرادیان از دو میدان مغناطیسی با بزرگی 8/0 و 08/0 تسلا استفاده شد. دوغاب­ ها با 70، 75 و 80 درصد وزنی ماده جامد و دو پراکنده­ ساز (دیسپرزنت) تهیه و تأثیر آنها بر ایجاد گرادیان آهن بررسی شد. نمونه­ ها در کوره مایکروویو به مدت 30 دقیقه در دماهای C˚1350 و C˚1450 و در دمای C˚1500 به مدت یک دقیقه در آرگون سینتر شدند. برخی از نمونه ­ها نیز در دمای 1485 درجه سانتی­گراد به مدت دو ساعت در کوره تیوبی در آرگون سینتر شدند. نتایج تصاویر ظاهر نمونه ­ها و میکروسکوپ نوری از گرادیان آهن در نمونه­ های خام و سینتر شده نشان داد که استفاده از دیسپرزنت PCN با 70% ماده جامد تحت میدان مغناطیسی 08/0 تسلا بهترین نمونه از نظر توزیع آهن، چگالی (g/cm3 7/3) و استحکام (MPa 7/82) می ­باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Slip Casting of Alumina-Fe Composite Under Magnetic Field

نویسندگان [English]

  • Hudsa Majidian
  • Somayeh Ghaffari Ghods
  • Touradj Ebadzadeh

Materials and Energy Research Center, Department of Ceramic, Karaj, Iran.

چکیده [English]

In this study, alumina-iron composites have been prepared by slip casting in order to provide gradient iron in alumina. 5 wt.% of iron was used under the magnetic fields by the magnitude of 0.8 and 0.08T. Two dispersants were examined as the dispersing agent using 70, 75 and 80 wt.% of solid loading in slips. Samples were sintered in a microwave oven at the temperature of 1350˚C and 1450˚C for 30 minutes, at 1500˚C for 1 minute, and in a conventional tube oven at the temperature of 1485˚C for 2 hours using argon gas. The apparent and optical microscope pictures of green and sintered samples revealed that using PCN and 70 wt.% of solid loading under the mild magnetic field results in the best sample regard as density (3.7 g/cm3 ), strength (82.7 MPa) and iron gradient.

کلیدواژه‌ها [English]

  • Alumina-Fe composite
  • slip casting
  • magnetic field
  • gradient
  1. He, , Ma, J., Tan, G.E.b., Fabrication and characteristics of alumina–iron functionally graded materials, Journal of Alloys and Compounds, 486 (1-2) (2009) 815-818.
  2. EL-Wazery, M.S., EL-Desouky, A.R., A review on functionally graded ceramic-metal materials, Journal of Materials and Environmental Science, 6 (5) (2015) 1369-1376.
  3. Udupa, G., S.Shrikantha, R., Gangadharan, K.V., Functionally graded composite materials: An overview, Procedia Materials Science, 5 (2014) 1291-1299.
  4. Chmielewski, M., Pietrzak, K., Metal-ceramic functionally graded materials, manufacturing, characterization, application, Bulletin of the Polish Academy of Sciences, 64 (1) (2016) 151-160.
  5. Peng, , Yan, M., Ge, H., Effects of magnetic field gradient on particle distributions of suspension comprised of both magnetic and nonmagnetic particles using two-dimensional monte carlo simulations, Advanced Materials Research, 79-82 (2009) 1301-1304.
  6. Szafran, M., Konopka, K., Bobryk, E., Kurzydłowski, K.J., Ceramic matrix composites with gradient concentration of metal particles, Journal of the European Ceramic Society, 27 (2007) 651-654.
  7. Kieback, B., Neubrand, A., Riedel, H., Processing techniques for functionally graded materials, Materials Science and Engineering A, 362 (2003) 81-105.
  8. Zhang, Z., Li, T., Yue, H., Zhang, J. Li, J., Study on the preparation of Al–Si functionally graded materials using power ultrasonic field, Short Communication, Materials and Design, 30(3) (2009) 851-856.
  9. Peng, , Yan, M. Shi, W., A new approach for the preparation of functionally graded materials via slip casting in a gradient magnetic field, Scripta Materialia, 56(10) (2007) 907-909.
  10. Babakhani, A., Zahabi, E. Yavari Mehrabani, Fabrication of Fe/Al2O3 composite foam via combination of combustion synthesis and spark plasma sintering techniques, Journal of Alloys and Compounds, 514 (2012) 20- 24.
  11. Yeomans, J.A., Ductile Particle Ceramic Matrix Composites-Scientific Curiosities or Engineering Materials?, Journal of the European Ceramic Society, 28(7) (2008) 1543-1550.
  12. Trusty, P.A., Yeomans, J.A., The Toughening of Alumina with Iron: Effects of Iron Distribution on Fracture Toughness, Journd of the European Cermic Society, 17(4) (1997) 495-504.
  13. Ozieblo, A., Wejrzanowski, T., Konopka, K., Szafran, , Kurzydłowski, K.J., Microstructure of Al2O3-Fe FGM obtained by modified slip-casting method, Materials Science Forum, 492-493 (2005) 665-672.
  14. Mi, Y., Xiaoling, P., Weitang, S., Relation of viscosity and inner structure of suspension under a magnetic field, Journal of Inorganic Materials, 23(4) (2008) 836-840.
  15. Mi, Y., Xiaoling, P., Weitang, S., Investigation on relation of viscosity and inner structure of suspension under a magnetic field, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027.
  16. Bossis, G., Lançon, P., Meunier, A., Iskakova, L., Kostenko, V., Zubarev, A., Kinetics of internal structures growth in magnetic suspensions, Physica A A, 392(7) (2013) 1567-1576.
  17. Aldridge, Yeomans, J.A., The thermal shock behaviour of ductile particle toughened alumina composites, Journal of the European Ceramic Society, 19(9) (1998) 1769-1775.
  18. Xue, D. S., Huang, Y.L., Ma, Y., Zhou, P.H., Niu, Z.P., Li, F.S., Magnetic properties of pure Fe-Al2O3 nanocomposites, Journal of Materials Science Letters, 22(24) (2003) 1817 – 1820.
  19. Novak, , Kalin, M., Lukas, P., Anne, G., Vleugels, J., Van Der Biest, O., The effect of residual stresses in functionally graded alumina–ZTA composites on their wear and friction behavior, Journal of the European Ceramic Society, 27(1) (2007) 151-156.
  20. Yodkaew, T., Morakotjinda, M., Tosangthum, N., Coovattanachai, O., Krataitong, R., Siriphol, P., Vetayanugul, B., Chakthin, S., Poolthong, N., Tongsri, R., Sintered Fe-Al2O3 and Fe-SiC Composites, Journal of Metals, Materials and Minerals, 18(1) (2008) 57-61.
  21. Suzuki, T.S., Uchikoshi, T., Sakka, Y., Control of texture in alumina by colloidal processing in a strong magnetic field, Science and Technology of Advanced Materials, 7(4) (2006) 356-364.
  22. Sakka, Y., Honda, A., Suzuki, T.S., Moriyoshi, Y., Fabrication of oriented β-alumina from porous bodies by slip casting in a high magnetic field, Solid State Ionics, 172(1-4) (2004) 341-347.
  23. Suzuki, T.S., Uchikoshi, T., Sakka, Y., Effect of sintering additive on crystallographic orientation in AlN prepared by slip casting in a strong magnetic field, Journal of the European Ceramic Society, 29(12) (2009) 2627-2633.
  24. Inoue, K., Sassa, K., Yokogawa, Y., Sakka, Y., Okido, M., Asai, A., Control of crystal orientation of hydroxyapatite by imposition of a high magnetic field, Materials Transactions, 44(6) (2003) 1133-1137.
  25. Mott, M., Evans, J.R.G., Zirconia/alumina functionally graded material made by ceramic ink jet printing, Materials Science and Engineering A, 271(1-2) (1999) 344-352.
  26. Ruys, A.J., Popov, E.B., Sun, D., Russell, J.J., Murray, C.C.J., Functionally graded electrical/thermal ceramic systems, Journal of the European Ceramic Society, 21(10-11) (2001) 2025-2029.