ساخت نانوکامپوزیت ذرات مگنتیت/الیاف کربنی به روش رسوب‎دهی الکتروفورتیک به عنوان جاذب امواج مایکروویو با باند بسامدی جذب موثر پهن

نویسنده

Nanotechnology, Emam Ali University

چکیده

در این تحقیق به بررسی خواص ساختاری، مغناطیسی و جذب امواج مایکروویو نانوکامپوزیت‎های جاذب ساخته شده از طریق پوشش‎دهی الیاف کربنی (CFs) با نانوذرات مگنتیت (Fe3O4) نوسط رسوب‎دهی الکتروفورتیک (EPD) بهبود یافته،پرداخته شده است. ابتدا نانو‎ذرات مگنتیت به روش هم‌رسوبی تهیه شده و سپس به وسیله‎ی فرآیند رسوب‎دهی الکتروفورتیک بهبود یافته روی CFs پوشش داده شد. بررسی خواص مغناطیسی نشان داد که مقادیر مغناطش اشباع و وادارندگی نانوپودر مگنتیت پس از انجام فرآیند رسوب‎دهی الکتروفورتیک به ترتیب از 72.3 به emu/g 33.1 از 4.9 به Oe 168 برای نانوکامپوزیت مگنتیت/الیاف کربنی می‎رسد. نتایج آزمون جذب امواج مایکروویو در محدوده‎ی بسامدی 8.2 تا GHz 12.4 نشان داد که میزان جذب موج نانوکامپوزیت مگنتیت/الیاف کربنی به‌شدت به ضخامت آن بستگی دارد. مقدار بیشینه‎ی جذب موجی در حدود dB 10.2- در GHz 10 با پهنای باند جذب موثری در حدود GHz 2 برای نمونه‎ی با ضخامت 2 میلی‎متر به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of the Microwave Absorber Fe3O4/CFs Nanocomposite Via Electrophoretic Deposition With a Wide Effective Absorption Bandwidth

چکیده [English]

In this study, the structural, magnetic and microwave absorption properties of a microwave absorber composite fabricated through electrophoretic deposition (EPD) of Fe3O4 nano-particles on carbon fibers (CFs) were studied. Firstly, co-precipitation method was employed to synthesize the Fe3O4 nano-particles. Then, these as-synthesized Fe3O4 nano-particles were successfully deposited on CFs using a modified EPD process. The measured magnetic properties of the as-synthesized Fe3O4 nano-powder and the Fe3O4/CFs nano-composite showed that the saturation magnetization of the bare Fe3O4 was decreased from 72.3 to 33.1 emu/g for the Fe3O4/CFs nano-composite and also its corecivity was increased from 4.9 to 168 Oe for the nano-composite. The results of reflection loss (RL) measurements in the 8.2- 12.4 GHz frequency range indicated that the RL of Fe3O4/CFs nano-composites are significantly influenced by their thickness. The maximum RL value of -10.2 dB at 10 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm.

کلیدواژه‌ها [English]

  • Carbon Fibers
  • Microwave absorption
  • nano-composite
  • Fe3O4 nano-particles

1.         Daniel, C. and Besenhard, J.O., eds. Handbook of battery materials, 2(011), Wiley-VCH Verlag & Co. KGaA: Weinheim.

 

  1. Taniguchi, A., Fujioka, N., Ikoma, M. and Ohta, A., Development of nickel/metal-hydride batteries for EVs and HEVs, Journal of power sources, 100(1) (2001) 117-124.
 

  1. Conte, M., Prosini, P. and Passerini, S., Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials, Materials Science and Engineering: B, 108(1) (2004) 2-8.
 

  1. Tarascon, J.-M. and Armand, M., Issues and challenges facing rechargeable lithium batteries, Nature, 414, (2001) 359-367.
 

  1. Hong, K., The development of hydrogen storage electrode alloys for nickel hydride batteries, Journal of power sources, 96(1) (2001) 85-89.
 

  1. Young, K. and Nei, J., The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications, Materials, 6(10) (2013) 4574-4608.
 

  1. Liu, Y., Pan, H., Gao, M., Wang, Q., Advanced hydrogen storage alloys for Ni/MH rechargeable batteries, Journal of Materials Chemistry, 13 (2011) 4743-4755.
 

  1. Lakner, J.F., Uribe, F.S. and Steward, S.A., Hydrogen and deuterium sorption by selected rare earth intermetallic compounds at pressures up to 1500 atm, Journal of the Less Common Metals, 72(1) (1980) 87-105.
 

  1. Ewe, H., Justi, E.W. and Stephan, K., Elektrochemische Speicherung und Oxidation von Wasserstoff mit der intermetallischen Verbindung LaNi5, Energy Conversion, 13(3) (1973) 109-113.
 

  1. Kuriyama, N., Sakai, T., Miyamura, H., Tanaka, H. and  Ishikawa, H., Uehara, I., et al., Hydrogen storage alloys for nickel-metal hydride battery, Vacuum, 47 (1996) 889-892.
 

  1. Percheron-Guegan, A., et al. Hydrogen electrochemical storage by substituted LaNi5 compounds. in Hydrides for Energy Storage, 1978.
 

  1. Feng, F., Electrochemical characteristics of  metal hydride electrodes for nickel/metal hydride rechargable batteries, Automotive and Materials Engineering, (2002), Windsor: Ontario.
 

  1. Chartouni, D., Meli, F., Züttel, A., Gross, K. and Schlapbach, L., The influence of cobalt on the electrochemical cycling stability of LaNi5-based hydride forming alloys, Journal of Alloys and Compounds, 241 (1996) 160-166.
 

  1. Ikowa, M., et al., in European Patent Application. 1987.
  2. Varin, R.A., Czujko, T. and Wronski, Z.S., Nanomaterials for Solid State Hydrogen Storage, (2008), New York: Springer.
 

  1. Holm, T., Synthesis and characterisation of the nanostructured magnesium-lanthanum-nickel alloys for Ni-metal hydride battery applications, (2012), Norwegian University of Science and Technology: Trondheim.
 

  1. Ozaki, T., Kanemoto, M., Kakeya, T., Kitano, Y., Kuzuhara, M.., Watada, M., Tanase, S. and Sakai, T., Stacking structures and electrode performances of rare earth–Mg–Ni-based alloys for advanced nickel–metal hydride battery, Journal of Alloys and Compounds, 446 (2007) 620-624.
 

  1. Fukumoto, Y., Miyamoto, M., Matsuoka, M. and Iwakura, C., Effect of thestoichiometric ratio on electrochemical properties of hydrogen storage alloys for nickel-metal hydride batteries, Electrochimica acta, 40(7) (1995) 845-848.
 

  1. Kohno, T., Yoshida, H., Kawashima, F., Inaba, T., Sakai, I., Yamamoto, M. and Kanda, M., Hydrogen storage properties of new ternary system alloys: La2MgNi9,La5Mg2Ni23, La3MgNi14, Journal of Alloys and Compounds, 311(2) (2000) L5-L7.
 

  1. Raju, M., Ananth, M. and Vijayaraghavan, L., Influence of electroless coatings of Cu, Ni–P and Co–P on MmNi3.25Al0.35Mn0.25Co0.66 alloy used as anodes in NiMH batteries, Journal of Alloys and Compounds, 475(1) (2009) 664-671.
 

  1. Sakai, T., Yoshinaga, H., Miyamura, H., Kuriyama, N. and Ishikawa, H., Rechargeable hydrogen batteries using rare-earth-based hydrogen storage alloys, Journal of Alloys and Compounds, 180(1-2) (1992) 37-54.
 

  1. Iwakura, C. and Matsuoka, M., Applications of hydrogen storage alloys to battery related fields:  Nickel-Hydrogen Batteries, Progress in Batteries and Battery Materilas, 10 (1991) 81-114.