نویسنده
Nanotechnology, Emam Ali University
چکیده
در این تحقیق به بررسی خواص ساختاری، مغناطیسی و جذب امواج مایکروویو نانوکامپوزیتهای جاذب ساخته شده از طریق پوششدهی الیاف کربنی (CFs) با نانوذرات مگنتیت (Fe3O4) نوسط رسوبدهی الکتروفورتیک (EPD) بهبود یافته،پرداخته شده است. ابتدا نانوذرات مگنتیت به روش همرسوبی تهیه شده و سپس به وسیلهی فرآیند رسوبدهی الکتروفورتیک بهبود یافته روی CFs پوشش داده شد. بررسی خواص مغناطیسی نشان داد که مقادیر مغناطش اشباع و وادارندگی نانوپودر مگنتیت پس از انجام فرآیند رسوبدهی الکتروفورتیک به ترتیب از 72.3 به emu/g 33.1 از 4.9 به Oe 168 برای نانوکامپوزیت مگنتیت/الیاف کربنی میرسد. نتایج آزمون جذب امواج مایکروویو در محدودهی بسامدی 8.2 تا GHz 12.4 نشان داد که میزان جذب موج نانوکامپوزیت مگنتیت/الیاف کربنی بهشدت به ضخامت آن بستگی دارد. مقدار بیشینهی جذب موجی در حدود dB 10.2- در GHz 10 با پهنای باند جذب موثری در حدود GHz 2 برای نمونهی با ضخامت 2 میلیمتر بهدست آمد.
کلیدواژهها
عنوان مقاله [English]
Synthesis of the Microwave Absorber Fe3O4/CFs Nanocomposite Via Electrophoretic Deposition With a Wide Effective Absorption Bandwidth
چکیده [English]
In this study, the structural, magnetic and microwave absorption properties of a microwave absorber composite fabricated through electrophoretic deposition (EPD) of Fe3O4 nano-particles on carbon fibers (CFs) were studied. Firstly, co-precipitation method was employed to synthesize the Fe3O4 nano-particles. Then, these as-synthesized Fe3O4 nano-particles were successfully deposited on CFs using a modified EPD process. The measured magnetic properties of the as-synthesized Fe3O4 nano-powder and the Fe3O4/CFs nano-composite showed that the saturation magnetization of the bare Fe3O4 was decreased from 72.3 to 33.1 emu/g for the Fe3O4/CFs nano-composite and also its corecivity was increased from 4.9 to 168 Oe for the nano-composite. The results of reflection loss (RL) measurements in the 8.2- 12.4 GHz frequency range indicated that the RL of Fe3O4/CFs nano-composites are significantly influenced by their thickness. The maximum RL value of -10.2 dB at 10 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm.
کلیدواژهها [English]
- Carbon Fibers
- Microwave absorption
- nano-composite
- Fe3O4 nano-particles
1. Daniel, C. and Besenhard, J.O., eds. Handbook of battery materials, 2(011), Wiley-VCH Verlag & Co. KGaA: Weinheim.
Taniguchi, A., Fujioka, N., Ikoma, M. and Ohta, A., Development of nickel/metal-hydride batteries for EVs and HEVs, Journal of power sources, 100(1) (2001) 117-124.
Conte, M., Prosini, P. and Passerini, S., Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials, Materials Science and Engineering: B, 108(1) (2004) 2-8.
Tarascon, J.-M. and Armand, M., Issues and challenges facing rechargeable lithium batteries, Nature, 414, (2001) 359-367.
Hong, K., The development of hydrogen storage electrode alloys for nickel hydride batteries, Journal of power sources, 96(1) (2001) 85-89.
Young, K. and Nei, J., The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications, Materials, 6(10) (2013) 4574-4608.
Liu, Y., Pan, H., Gao, M., Wang, Q., Advanced hydrogen storage alloys for Ni/MH rechargeable batteries, Journal of Materials Chemistry, 13 (2011) 4743-4755.
Lakner, J.F., Uribe, F.S. and Steward, S.A., Hydrogen and deuterium sorption by selected rare earth intermetallic compounds at pressures up to 1500 atm, Journal of the Less Common Metals, 72(1) (1980) 87-105.
Ewe, H., Justi, E.W. and Stephan, K., Elektrochemische Speicherung und Oxidation von Wasserstoff mit der intermetallischen Verbindung LaNi5, Energy Conversion, 13(3) (1973) 109-113.
Kuriyama, N., Sakai, T., Miyamura, H., Tanaka, H. and Ishikawa, H., Uehara, I., et al., Hydrogen storage alloys for nickel-metal hydride battery, Vacuum, 47 (1996) 889-892.
Percheron-Guegan, A., et al. Hydrogen electrochemical storage by substituted LaNi5 compounds. in Hydrides for Energy Storage, 1978.
Feng, F., Electrochemical characteristics of metal hydride electrodes for nickel/metal hydride rechargable batteries, Automotive and Materials Engineering, (2002), Windsor: Ontario.
Chartouni, D., Meli, F., Züttel, A., Gross, K. and Schlapbach, L., The influence of cobalt on the electrochemical cycling stability of LaNi5-based hydride forming alloys, Journal of Alloys and Compounds, 241 (1996) 160-166.
Ikowa, M., et al., in European Patent Application. 1987.
Varin, R.A., Czujko, T. and Wronski, Z.S., Nanomaterials for Solid State Hydrogen Storage, (2008), New York: Springer.
Holm, T., Synthesis and characterisation of the nanostructured magnesium-lanthanum-nickel alloys for Ni-metal hydride battery applications, (2012), Norwegian University of Science and Technology: Trondheim.
Ozaki, T., Kanemoto, M., Kakeya, T., Kitano, Y., Kuzuhara, M.., Watada, M., Tanase, S. and Sakai, T., Stacking structures and electrode performances of rare earth–Mg–Ni-based alloys for advanced nickel–metal hydride battery, Journal of Alloys and Compounds, 446 (2007) 620-624.
Fukumoto, Y., Miyamoto, M., Matsuoka, M. and Iwakura, C., Effect of thestoichiometric ratio on electrochemical properties of hydrogen storage alloys for nickel-metal hydride batteries, Electrochimica acta, 40(7) (1995) 845-848.
Kohno, T., Yoshida, H., Kawashima, F., Inaba, T., Sakai, I., Yamamoto, M. and Kanda, M., Hydrogen storage properties of new ternary system alloys: La2MgNi9,La5Mg2Ni23, La3MgNi14, Journal of Alloys and Compounds, 311(2) (2000) L5-L7.
Raju, M., Ananth, M. and Vijayaraghavan, L., Influence of electroless coatings of Cu, Ni–P and Co–P on MmNi3.25Al0.35Mn0.25Co0.66 alloy used as anodes in Ni–MH batteries, Journal of Alloys and Compounds, 475(1) (2009) 664-671.
Sakai, T., Yoshinaga, H., Miyamura, H., Kuriyama, N. and Ishikawa, H., Rechargeable hydrogen batteries using rare-earth-based hydrogen storage alloys, Journal of Alloys and Compounds, 180(1-2) (1992) 37-54.
Iwakura, C. and Matsuoka, M., Applications of hydrogen storage alloys to battery related fields: Nickel-Hydrogen Batteries, Progress in Batteries and Battery Materilas, 10 (1991) 81-114.