نویسندگان

پژوهشگاه مواد و انرژی، پژوهشکده سرامیک، کرج، ایران.

چکیده

پوشش‌های MCrAlY نقش ویژه‌ای در چگونگی عملکرد موتورهای توربینی دارند. نقش اصلی این پوشش‌ها مقاومت در برابر اکسایش است، بنابراین مطالعات گسترده‌ای در شناخت سازوکار اکسایش این پوشش‌ها صورت گرفته است. علی‌رغم اهمیت ویژه مراحل ابتدایی اکسایش، تاکنون چندان به آن پرداخته نشده است. در تحقیق حاضر اثر اسپلت‌های سطحی بر سازوکار مراحل اولیه اکسایش پوشش CoNiCrAlY مطالعه گردید. نتایج تجربی نشان می‌دهد که پوسته اکسیدی تولید شده بر روی اسپلت‌ها در لحظات اول اکسایش دارای مقادیر قابل توجهی از عناصر سنگین (کبالت، کروم و نیکل) است، که به تدریج با نفوذ آلومینیوم به سطح پوشش، با اکسید غنی از آلومینیوم جایگزین می‌شود. نفوذ آلومینیوم به سطح پوشش در زمان‌های طولانی‌تر، علاوه بر افزایش ضخامت پوسته اکسیدی، منجر به تخلیه سطح اسپلت از فاز β نیز می‌شود که این موارد به ترتیب می‌تواند باعث ایجاد ترک و رشد موضعی اکسید شود. در نهایت، به علت نسبت زیاد سطح به حجم اسپلت و محدودیت آلومینیوم موجود در آن (بالاخص اسپلت‌های فاقد اتصال مناسب)، سرعت اکسایش و تخریب اسپلت‌ها به‌طور مشهودی بیشتر از دیگر سطوح پوشش است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of Oxidation Mechanism of HVOF-CoNiCrAlY Coating in Early Stages of Application

نویسندگان [English]

  • Davoud Salehi Doolabi
  • Mohammad Reza Rahimipour
  • Mehdi Alizadeh
  • , Seyed Mohammad Mehdi Hadavi
  • Mohammad Reza Vaezi

Materials and Energy Research Center, Department of Ceramic, Karaj, Iran.

چکیده [English]

MCrAlY coatings possess important role on the performance of turbine engines. Their main application is resistance to high temperature oxidation. Although the oxidation mechanism of these coatings were studied by other researchers, there is lack of published papers on the early stage of this phenomenon. In this project, the effect of surface splats produced during HVOF process on early stage oxidation mechanism of the CoNiCrAlY coating was studied in terms of both oxidation time and adhesion characteristics of splats to the coating surface. The experimental results showed that in the first oxidation moments, the oxide layer which forms on the splats is composed of significant amount of heavy metals (Ni, Co and Cr). By gradual aluminum diffusion to the coating surface, a rich aluminum oxide is replaced by the heavy element oxides. Diffusion of Al to the surface of coating over time in addition to increasing the thickness of oxide layer could also cause depletion of β phase from splats surface. These two resulted in the formation of crack in the coating and local oxide growth (spinel oxide in nodular shape), respectively. Consequently, the oxidation rate of areas covered by splats was much higher than the coating surface areas without splats due to high ratio of surface area to volume of splats and limited aluminum reservoir in the splats (specially for splats with poor bonding to the surface).

کلیدواژه‌ها [English]

  • Surface splats
  • CoNiCrAlY
  • Early Stages of Oxidation
  • HVOF
  • spinel oxides
  1. Gurrappa, I., Sambasiva Rao, A., Thermal barrier coatings for enhanced efficiency of gas turbine engines, Surface and Coatings Technology, 2006, 201, (6), 3016-3029.
  2. Gallardo, J. M., Rodrı́guez, J. A., Herrera, E. J., Failure of gas turbine blades, Wear, 2002, 252, (3-4), 264-268.
  3. Sidhu, T. S., Agrawal, R. D., Prakash, S., Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings-a review, Surface and Coatings Technology, 2005, 198, (1-3), 441-446.
  4. Bao, Z. B., Wang, Q. M., Li, W. Z., Liu, X., Gong, J., Xiong, T. Y., Sun, C., Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy, Corrosion Science, 2009, 51, (4), 860-867.
  5. Pettit, F., Hot Corrosion of Metals and Alloys, Oxidation of Metals, 2011, 76, (1), 1-21.
  6. Goward, G. W., Progress in coatings for gas turbine airfoils, Surface and Coatings Technology, 1998, 108–109, 73-79.
  7. Evans, A. G., Clarke, D. R., Levi, C. G., The influence of oxides on the performance of advanced gas turbines, Journal of the European Ceramic Society, 2008, 28, (7), 1405-1419.
  8. Rabiei, A., Evans, A. G., Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings, Acta Materialia, 2000, 48, (15), 3963-3976.
  9. Jiang, S. M., Xu, C. Z., Li, H. Q., Ma, J., Gong, J., Sun, C., High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating I: Microstructure evolution, Corrosion Science, 2010, 52, (5), 1746-1752.
  10. Li, Y., Li, C.-J., Yang, G.-J., Xing, L.-K., Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying, Surface and Coatings Technology, 2010, 205, (7), 2225-2233.
  11. Mercier, D., Kaplin, C., Goodall, G., Kim, G., Brochu, M., Parameters influencing the oxidation behavior of cryomilled CoNiCrAlY, Surface and Coatings Technology, 2010, 205, (7), 2546-2553.
  12. Buršík, J., Brož, P., Popovič, J., Microstructure and phase equilibria in Ni–Al–Cr–Co alloys, Intermetallics, 2006, 14, (10-11), 1257-1261.
  13. Tang, F., Ajdelsztajn, L., Schoenung, J. M., Influence of Cryomilling on the Morphology and Composition of the Oxide Scales Formed on HVOF CoNiCrAlY Coatings, Oxidation of Metals, 2004, 61, (3), 219-238.
  14. Karaoglanli, A. C., Turk, A., Ozdemir, I., Ustel, F., Comparison of Oxidation and Thermal Shock Performance of Thermal Barrier Coatings, Materials and Manufacturing Processes, 2015, 30, (6), 717-723.
  15. Richer, P., Yandouzi, M., Beauvais, L., Jodoin, B., Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying, Surface and Coatings Technology, 2010, 204, (24), 3962-3974.
  16. Tang, F., Ajdelsztajn, L., Kim, G. E., Provenzano, V., Schoenung, J. M., Effects of surface oxidation during HVOF processing on the primary stage oxidation of a CoNiCrAlY coating, Surface and Coatings Technology, 2004, 185, (2-3), 228-233.
  17. Saeidi, S., Voisey, K. T., McCartney, D. G., The Effect of Heat Treatment on the Oxidation Behavior of HVOF and VPS CoNiCrAlY Coatings, Journal of Thermal Spray Technology, 2009, 18, (2), 209-216.
  18. Chen, W. R., Degradation of a TBC with HVOF-CoNiCrAlY Bond Coat, Journal of Thermal Spray Technology, 2014, 23, (5), 876-884.
  19. Okada, M., Vassen, R., Karger, M., Sebold, D., Mack, D., Jarligo, M. O., Bozza, F., Deposition and Oxidation of Oxide-Dispersed CoNiCrAlY Bondcoats, Journal of Thermal Spray Technology, 2014, 23, (1), 147-153.
  20. Irissou, É., Legoux, J.-G., Ryabinin, A., Jodoin, B., Moreau, C., Review on Cold Spray Process and Technology: Part I - Intellectual Property, Journal of Thermal Spray Technology, 2008, 17, (December 4), 495-516.
  21. Saeidi, S., Voisey, K. T., McCartney, D. G., Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings, Journal of Thermal Spray Technology, 2011, 20, (6), 1231-1243.
  22. Kumar, D., Pandey, K. N., Das, D. K., Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application, International Journal of Minerals, Metallurgy, and Materials, 2016, 23, (8), 934-942.
  23. Rathod, W. S., Khanna, A. S., Rathod, R. C., Sapate, S. G., Wear and Corrosion Behavior of CoNiCrAlY Bond Coats, Journal of The Institution of Engineers (India): Series C, 2014, 95, (3), 261-271.
  24. Wang, L., Wang, Y., Sun, X. G., He, J. Q., Pan, Z. Y., Wang, C. H., Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying, Ceramics International, 2012, 38, (5), 3595-3606.
  25. Jamali, H., Mozafarinia, R., Shoja Razavi, R., Ahmadi-Pidani, R., Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings, Ceramics International, 2012, 38, (8), 6705-6712.
  26. Chen, W. R., Wu, X., Dudzinski, D., Influence of Thermal Cycle Frequency on the TGO Growth and Cracking Behaviors of an APS-TBC, Journal of Thermal Spray Technology, 2012, 21, (6), 1294-1299.
  27. Yuan, K., Lin Peng, R., Li, X.-H., Johansson, S., Wang, Y.-D., Some aspects of elemental behaviour in HVOF MCrAlY coatings in high-temperature oxidation, Surface and Coatings Technology, 2015, 261, 86-101.
  28. Mohammadi, M., Javadpour, S., Kobayashi, A., Jenabali Jahromi, S. A., Shirvani, K., Thermal shock properties and microstructure investigation of LVPS and HVOF-CoNiCrAlYSi coatings on the IN738LC superalloy, Vacuum, 2013, 88, 124-129.
  29. Marginean, G., Utu, D., Cyclic oxidation behaviour of different treated CoNiCrAlY coatings, Applied Surface Science, 2012, 258, (20), 8307-8311.
  30. Puetz, P., Huang, X., Lima, R. S., Yang, Q., Zhao, L., Characterization of transient oxide formation on CoNiCrAlY after heat treatment in vacuum and air, Surface and Coatings Technology, 2010, 205, (2), 647-657.
  31. Yuan, F. H., Chen, Z. X., Huang, Z. W., Wang, Z. G., Zhu, S. J., Oxidation behavior of thermal barrier coatings with HVOF and detonation-sprayed NiCrAlY bondcoats, Corrosion Science, 2008, 50, (6), 1608-1617.
  32. Khaled, M. M., Yilbas, B. S., Corrosion properties of HVOF-coated steel in simulated concrete pore electrolyte and concentrated chloride environments, Surface and Coatings Technology, 2007, 202, (3), 433-438.
  33. Yang, G.-J., Xiang, X.-D., Xing, L.-K., Li, D.-J., Li, C.-J., Li, C.-X., Isothermal Oxidation Behavior of NiCoCrAlTaY Coating Deposited by High Velocity Air-Fuel Spraying, Journal of Thermal Spray Technology, 2012, 21, (3), 391-399.
  34. Guo, M. H., Wang, Q. M., Gong, J., Sun, C., Huang, R. F., Wen, L. S., Oxidation and hot corrosion behavior of gradient NiCoCrAlYSiB coatings deposited by a combination of arc ion plating and magnetron sputtering techniques, Corrosion Science, 2006, 48, (9), 2750-2764.
  35. Choi, H., Yoon, B., Kim, H., Lee, C., Isothermal oxidation of air plasma spray NiCrAlY bond coatings, Surface and Coatings Technology, 2002, 150, (2-3), 297-308.