نویسندگان

دانشگاه آزاد اسلامی، گروه مهندسی مواد، شاهرود، ایران

چکیده

در این تحقیق نانوپودر تیتانات سرب به‌روش فعال‌سازی مکانیکی سنتز شد. مواد اولیه شامل پودرهای اکسید تیتانیوم (آناتاز) و اکسید سرب (ІІ) با نسبت وزنی گلوله به پودر 10:1 و نسبت پودری ١:۱ به مدت 30 ساعت در آسیاب سیاره‌ای گلوله‌ای آسیا‌کاری شدند. سپس در دماهای 800، 900 و °C1000 عملیات حرارتی شدند. مشخصات نانوپودر حاصل توسط میکروسکوپ الکترونی روبشی گسیل الکترونی متاثر از میدان (FESEM)، پراش اشعه ایکس (XRD)، طیف‌سنجی تبدیل فوریه مادون قرمز (FTIR) بررسی شد از آنالیز طیف‌سنجی جذبی UV جهت محاسبه شکاف انرژی استفاده شد. فعالیت فوتوکاتالیستی نانوپودر توسط تخریب رنگ متیل اورانژ تحت تابش پرتو فرابنفش مورد بررسی قرار گرفت. سپس تاثیر پارامترهای مختلف از جمله غلظت اولیه رنگ، میزان فوتوکاتالیست و pH بر رنگبری بهینه شد. نتایج آزمایشات نشان می‏دهد که مقدار بهینه غلظت اولیه رنگ و میزان فوتوکاتالیست به ترتیبppm 10 و 042/0 گرم می‏باشد. همچنین بیشترین رنگبری در 4= pH مشاهده شد. نتایچ حاصل شده نشان داد که تخریب فوتوکاتالیستی رنگ متیل اورانژ در حضور نانوپودر تیتانات سرب صورت گرفت.

کلیدواژه‌ها

عنوان مقاله [English]

Synthesis of Lead Titanate Nanostructure by Mechanical Activation Method and Evaluating of its Photocatalytic Decolorization of Methyl orange

نویسندگان [English]

  • Sahebali Manafi
  • Elnaz Khosravipanah

Islamic Azad University, Department of Engineering, Shahrood Branch, Shahrood, Iran.

چکیده [English]

In this study, lead titanate nanopowder was synthesized using mechanical activation. Raw materials including titanium oxide powder (anatase) and Lead oxide (ІІ) with a ball to powder weight ratio of 1:10 and the powder ratio of 1:1 were milled in a planetary ball mill for 30 hours. Then, they were heated at 800, 900 and 1000 °C. The obtained nanopowder was investigated by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The UV absorption spectroscopy was used to calculate the energy gap. Photocatalytic activity of nanopowder by dye degradation of methyl orange under UV light was evaluated. The effects of various influential parameters including initial dye concentration, photocatalyst dose and pH on the dye decolorization were also optimized. The optimum value for initial dye concentration and photocatalyst dose, were 10 ppm and 0.042 g respectively. Also, the best rate of decolorization observed at pH=4. Our results showed that, the photocatalytic degradation of methyl orange dye in the presence of lead titanate nanopowder was done.

کلیدواژه‌ها [English]

  • Lead titanate nanopowder
  • Mechanical activation
  • photocatalyst
  • Methyl Orange
  1. Nagham , A., Ageena, A., "The Use of Local Sawdust as an Adsorbent for the Removal of Copper Ion from Wastewater Using Fixed Bed Adsorption", Journal of Engineering and Technology, 28, 2010, 859.
  2. Niu, P., Hao, J., "Photocatalytic degradation of methyl orange by titanium dioxide-decatungstate nanocomposite films supported on glass slides", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431, 2013, 127.
  3. Zhang, P., An, Q., Guo, J., Wang, C. C., "Synthesis of mesoporous magnetic Co-NPs/carbon nanocomposites and their adsorption property for methyl orange from aqueous solution", Colloid Interface Sci, 389, 2013, 10.
  4. Zhao,D., Zhang, W., Wang, X., Chen, C., "Adsorption of Methyl Orange Dye onto Multiwalled Carbon Nanotubes", Procedia Environmental Science, 18, 2013, 890.
  5. Royer, B., Cardoso, N. F., Lima, E. C., Ruiz, V. S. O., Macedo, T. R., Airoldi, C., "Organofunctionalized kenyaite for dye removal from aqueous solution", Colloid Interface Scienc, 336, 2009, 398.
  6. Zhang, Z., Xu, Y., Ma, X., Li, F., Liu, D., Chen, Z., Zhang, F., Dionysiou, D. D., "Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW) ", Journal of Hazardous Materials, 271, 2012, 209– 210.
  7. Zhu, H., Jiang,R., Fu, Y., Guan, Y., Yao, J., Xiao, L., Zeng, G., "Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation", Desalination, 286, 2012, 41.
  8. Bielska, M., Szymanowski, J., "Removal of methylene blue from waste water using micellar enhanced ultrafiltration", Water Research, 40, 2006, 1027–1033.
  9. Katarzyna Majewska-Nowak, "The effect of a polyelectrolyte on the efficiency of dye-surfactant solution treatment by ultrafiltration", Desalination, 221, 2008, 395–404.
  10. Al-Bastaki, N., "Removal of methyl orange dye and Na 2 SO4 salt from synthetic waste water using reverse osmosis", Chemical Engineering and Processing: Process Intensification, 43, 2004, 1561–1567.
  11. Nataraj, S.K., Hosamani, K.M., Aminabhavi, T.M., "Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures", Desalination, 249, 2009, 12.
  12. Jeng-Shiou, W., Chia-Hung, L., Khim Hoong, Ch., Shing-Yi, S., "Removal of Cationic Dye Methyl Violet 2B from Water by Cation Exchange Membranes", Journal of Membrane Science, 309, 2008, 239.
  13. Suhong, Ch., Jian, Zh., Chenglu, Zh., Qinyan, Y., Yan, L., Chao, L., "Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis", Desalination, 252, 2010, 149.
  14. Zhuannian, L., Anning, ZH., Guirong, W., Xiaoguang, ZH., "Adsorption Behavior of Methyl Orange onto Modified Ultrafine Coal Powder", Chinese Journal of Chemical Engineering, 17, 2009, 942.
  15. Augustine, O. E., "Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust", Chemical Engineering Journal, 143, 2008, 85.
  16. Jinshui, L., Shi, M., Lingjie, Z., "Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution", Applied Surface Science, 265, 2013, 393.
  17. Tseng, W. J., Lin, R. D., "BiFeO₃/α-Fe₂O₃ core/shell composite particles for fast and selective removal of methyl orange dye in water", Journal of Colloid and Interface Science, 428, 2014, 95.
  18. Hao, W., Xi, Y., Hu, J., Wang, T., Du, Y., Wang, X. L., "Magnetic properties and microstructures of iron oxide@mesoporous silica core-shell composite for applications in magnetic dye separation", Journal of Applied Physics, 111, 2012, 07B301.
  19. Corro, G., Pal, U., Tellez, N., "Biodiesel production from Jatropha curcas crude oil using ZnO/SiO2 photocatalyst for free fatty acids esterification", International Journal of Chemichal and Analytical Science, 4, 2013, 125.
  20. Ren, C., Yang, B., Wu, M., Xu, J., Fu, Z., Guo, T., "Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance", Journal of Hazardous Materials, 182, 2010, 123.
  21. Wang, J., Li, J., Wang, Y.W., "Prepare of the New Structure PbTiO3 Nanowires and the Study of the Reversible Bending", Mechanics and Materials, 331, 2013.
  22. Kennedy, J., Leveneur, J., Murmu, P.P., AamirIqbal, "Ion Implantation Study of Rare-Earth Doped Strontium Titanate", International Journal of ChemTech Research, 7, 2015, 90-593.
  23. Wang, Y., Yang, L., Wang, X., "Synthesis of PbTiO3 nanowires via a simple hydrothermal method", Journal of Ceramic Processing Research, 14, 2013, 1.
  24. Valdimir, K., "High aspect ratio lead zirconate titanate structures: I. Template assisted fabrication - vacuum infiltration method", Processing and Application of Ceramics, 6, 2012, 37.
  25. Talebian, A., Entezari, M.H., Ghows, N., "Complete mineralization of surfactant from aqueous solution by a novel sono-synthesized nanocomposite (TiO2–Cu2O) under sunlight irradiation", Chemical Engineering Journal, 229, 2013, 304.
  26. Zheng, Sh., Gao, L., Zhang, Q.H., Guo, J.K.. "Synthesis, characterization and photocatalytic properties of titania-modified mesoporous silicate MCM-41", Journal Mater Chem, 10, 2000, 723.      
  27. Viviana, M., Silva. Rocha, M., Godoi, P., Leonardo. Ribeiro, T., Marluce, O., Guarda, S., "Effect of copper on the photocatalytic activity of semiconductor-based titanium dioxide (anatase) and hematite (α-Fe2O3) ", Materials Science and Engineering: B, 185, 2014, 13.
  28. Alem, A., Sarpoolaky, H.," The Effect of Silver Doping on Photocatalytic Properties of Titania Multilayer Membranes", Solid State Sciences, 12, 2010, 1469-1472.
  29. Shinichi, T., Takeshi, M., Hisao, Y., "Dye-sensitization of n-TiO 2 single-crystal electrodes with vapor-deposited oxometal phthalocyanines", Applied Surface Science, 143, 1999, 23.
  30. Mazloomi Tabaei, H.S., Kazemeini, M., Fattahi, M., "Preparation and characterization of visible light sensitive nano titanium dioxide photocatalyst", Scientia Iranica, 19, 2012, 1626.
  31. شریفات، س.، ذوالقرنین، ح.، حمیدی فلاحی، ع.، " بررسی حذف رنگ متیل اورانژ توسط نانوکامپوزیت هیدروکسی آپاتیت/تیتانیا"،   مجله علمی-پژوهشی شیمی کاربردی، 1393، شماره 33.
  32. کیوانلو، ت.، یزدانیراد، ر.، اسدیان، ک.، ایمانیه، م.، وحید شاد، ی.، شاخصی، س.، "بررسی پارامترهای موثر عملیات حرارتی روی فعالیت فوتوکاتالیستی نانوکامپوزیت تیتانیا - نقره تحت تابش نور مرئی" ، مجله نانو مواد، 1390.
  33. Mote, V.D., Purushotham, Y., Dole, B.N., "Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles", Journal of Theoretical and Applied Physics, 6, 2012.
  34. Tartaj, J., Moure, C., Lascano, L., Duran, P., "Sintering of dense ceramics bodies of pure lead titanate obtained by seeding-assisted chemical sol-gel ", Journal of Materials Research Bulletin, 36, 2001, 2301.
  35. Calzada, M.L., Alguero, M., Pardo, L., "Chemistry-Crystallization-Microstructure Relations of Sol-Gel Derived Lanthanum Modified Lead Titanate Thin Films", Journal of Sol-Gel Science and Technology, 13, 1998, 837.
  36. Udomporn, A., Ananta S., "The phase formation of lead titanate powders prepared by solid-state reaction", Phys, 4, 2004, 186.
  37. Udomporn, A., Ananta, S., , "Effect of calcination condition on phase formation and particle size of lead titanate powders synthesized by the solid-state reaction", Materials Letters, 58, 2003, 1154.
  38. Ananta, S., Tipakontitikul, R., Tunkasiri, T., "Synthesis, formation and characterization of zirconium titanate (ZT) powders", Materials Letters, 57, 2003, 2637.
  39. Nyquist, R.A., Kagel, R.O., "Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts", Academic Press: San Diego, 1997.
  40. Ahmad, A.,  Bedard, P., Wheat, T.A., Kuriakose, A.K.,  McDonald, A.G., "Surface area, XRD, and FTIR spectral characterization of chemically derived PbTiO3 ceramics", Journal of Solid State Chemistry, 93, 1991, 220-227.
  41. Zarel, K., Sadjadi, M.S., Enhessari, M., Khanahmadzadeh, S., "Synthesis and Characterization of PbTiO3 Nanopowders by Citric Acid Gel Method", Journal of Physical and Theoretical Chemistry, 1, 2009, 9 – 12.
  42. He, H., Yin, J., Li, Y., Zhang, Y., Qiu, H., Xu, J., Xu, T., Wang, C., "Size controllable synthesis of single-crystal ferroelectric Bi4Ti3O12 nanosheet dominated with {0 0 1} facets toward enhanced visible-light-driven photocatalytic activities", Applied Catalysis B: Environmental, 156, 2014, 35-43.
  43. Huang, Y., Cai, Y., Qiao, D., Liu, H., "Morphology-controllable synthesis and characterization of CeO2 nanocrystals", Particuology, 9, 2011, 170–173.
  44. Jing, L., Yuan, F., Hou, H., Xin, B., Cai, W., "Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles", Acta Chim, 61, 2003, 1451.
  45. Olyaa, M.E., Pirkarami, A., Soleimani, M., Bahmaei, M., " Photoelectrocatalytic degradation of acid dye using Ni-TiO2 with the energy supplied by solar cell: mechanism and economical studies", Journal of Environmental Management, 121,2013,210.
  46. Konstantinou, I.K., Albanis, T.A., " TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations”, Applied Catalysis B, 49, 2004, 1.
  47. Krishnakumar, B., Selvam, K., Velmurugan, R., Swaminathan, M., " Influence of operational parameters on photodegradation of Acid Black 1 with ZnO", Desalination and Water Treatment, 24, 2010, 132.
  48. Lee, J.M., Kim, M.S., Hwang, B., Bae, W., Kim, B.W.,  " Photodegradation of acid red 114 dissolved using a photo-Fenton process with TiO2", Dyes Pigments Journal, 56, 2003, 59.
  49. Silva, D.a, Faria, C.G., "Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation", Journal of Photochemistry and Photobiology, 155, 2003, 133-143.
  1.