نویسندگان

1 پژوهشگاه مواد و انرژی، پژوهشکده فناوری نانو و مواد پیشرفته، کرج، ایران

2 موسسه پژوهشی علوم و فناوری رنگ و پوشش ، تهران، ایران

چکیده

در این پژوهش شیشه زیست فعال تهیه شده به روش سل-ژل در سیستم Na2O–CaO -P2O5-SiO2 با استفاده از پیش ماده های معمول نیتراتی مورد بررسی قرار گرفت. برخی متغیرهای فرایند مانند نسبت آب/ الکل/TEOS، نوع کاتالیزور (اسیدی یا بازی) و دمای عملیات حرارتی نیز مورد تحقیق قرار گرفت. همچنین برای تامین Ca و Na در ترکیب شیشه از پیش ماده های مختلفی مانند استات ها، کربنات ها و کلریدها استفاده شد. به منظور تعیین دمای تبلور، نوع فازهای ایجاد شده در پودرهای سنتز شده و گروه های شیمیایی به ترتیب از آزمون های STA، XRD وFTIR بهره گرفته شد. هرچند که عوامل مورد بررسی بر روی خصوصیات پودر نهایی و فازهای تشکیل شده تاثیر گذارند ولی تغییر آن ها در ترکیباتی که مقدار Na2O زیادی دارند منجر به تشکیل فاز آمورف نشده است و همواره نمک نیترات سدیم در الگوهای XRD پودر سنتز شده مشاهده می شود. نتایج نشان داد در حالتی که درصد Na2O در ترکیب شیشه از 4/24 به 7/13 درصد مولی کاهش یابد، می توان به فاز آمورف رسید.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of Sol-Gel Derived SiO2 - P2O5 – CaO- Na2O Bioactive Glass Using Various Precursors

نویسندگان [English]

  • Shokofeh Borhan 1
  • Saeed Hesaraki 1
  • Aliasghar Behnamghader 1
  • Ebrahim Ghasemi 2

1 Materials & Energy Research Center, Nanotechnology and Advanced Materials, Karaj, Iran.

2 Institute for Color Science and Technology, Tehran, Iran

چکیده [English]

In this research, sol-gel bioactive glass in SiO2 - P2O5 – CaO - Na2O system using common nitrate
precursors was investigated. Some parameters like water/alcohol/TEOS ratio, type of catalyst (acid or alkali) and
temperature of heat treatment were also studied. Various precursors such as acetates, carbonates and chlorides were
utilized to introduce Ca and Na in glass composition. Characterization of crystallization temperature, created phases and
chemical groups in synthesis powder was accomplished by STA, XRD and FTIR analyses. Although above-mentioned
parameters influence on final powder characteristics, their changes cannot induce amorphous phase development in
composition with high amount of Na2O and sodium nitrate is always observed in their XRD patterns. Results indicated
that by decreasing Na2O from 24.4 %mol. to 13.7 %mol. in glass composition, amorphous phase could be achieved.

کلیدواژه‌ها [English]

  • Bioactive glass
  • Sol-gel
  • Sodium nitrate
[1]  M. Sohrabi, S. Hesaraki, A. Kazemzadeh, and M. Alizadeh, “Development of injectable biocomposites from hyaluronic acid and bioactive glass nano-particles obtained from different sol-gel routes.,” Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 33, no. 7, pp. 3730–44, Oct. 2013.
[2] M. Sohrabi, S. Hesaraki, and A. Kazemzadeh, “The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors and in vitro responses : Hyaluronic acid versus sodium alginate,” J Biomed Mater Res B Appl Biomater., vol.102B, pp. 561–573, 2014.
[3] R. Catteaux and I. Grattepanche-lebecq, “Synthesis , characterization and bioactivity of bioglasses in the Na2O – CaO – P2O5 – SiO2 system prepared via sol gel,” chemical engineering research and design, pp. 2420–2426, 2013.
[4] P. Sepulveda, J. R. Jones, and L. L. Hench, “Characterization of Melt-Derived 45S5 and sol-gel – derived 58S Bioactive Glasses,” J Biomed Mater Res (Appl Biomater), vol. 58 pp. 734–740, 2001.
[5] F. Mezahi, A. L.- Girot, H. Oudadesse, and A. Harabi, “Reactivity kinetics of 52S4 glass in the quaternary system SiO2 – CaO – Na2O – P2O5 : In fl uence of the synthesis process : Melting versus sol – gel,” J. Non. Cryst. Solids, vol. 361, pp. 111–118, 2013.
[6] A. Lucas-girot, F. Zohra, M. Mami, and H. Oudadesse, “Sol – gel synthesis of a new composition of bioactive glass in the quaternary Comparison with melting method,” Journal of Non-Crystalline Solids, vol. 357, pp. 3322–3327, 2011.
[7] I. Cacciotti, M. Lombardi, and L. Montanaro, “Sol – gel derived 45S5 bioglass : synthesis , microstructural evolution and thermal behaviour,” J Mater Sci: Mater Med, vol. 23 pp. 1849–1866, 2012.
[8] J. R. Jones, “Review of bioactive glass : From Hench to hybrids” Acta Biomaterialia, vol. 9, pp. 4457-4486, 2013
[9] Q. Chen and G. A. Thouas, “Fabrication and characterization of sol – gel derived 45S5 Bioglass – ceramic scaffolds,” Acta Biomaterialia, vol. 7, pp. 3616–3626, 2011.
[10] E. Rezabeigi, P. M. Wood-Adams, and R. a L. Drew, “Synthesis of 45S5 Bioglass® via a straightforward organic, nitrate-free sol-gel process.,” Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 40, pp. 248–52, 2014.
[11] O. Kesmez, E. Burunkaya, N. Kiraz, H. E. Çamurlu, M. Asiltürk, E. Arpaç, “Effect of acid, water and alcohol ratios on sol-gel preparation of antireflective amorphous SiO2 coatings” Journal of Non-Crystalline Solids, vol. 357, pp. 3130–3135, 2011
[12] Q. Chen, Y. Li, L. Jin, J. M. W. Quinn, and P. A. Komesaroff, “A new sol – gel process for producing Na2O-containing bioactive glass ceramics,” Acta Biomaterialia, vol. 6, pp. 4143–4153, 2010.
[13] I. Cacciotti, M. Lombardi, A. Bianco, A. Ravaglioli, “Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour” J Mater Sci: Mater Med, vol. 23, pp. 1849–1866, 2012.
[14] L. C. Klein, “Sol-gel processing of silicates” Ann. Rev. Mater. Sci., vol. 15, pp. 227-248, 1985.
[15] H. Active and M. Tio, “A Novel Acid-Base Catalyzed Sol-Gel Synthesis of Highly Active Mesoporous TiO2 Photocatalysts” Bull. Korean Chem. Soc., vol. 28, pp. 1951–1957, 2007.
[16] J. Chun, T. Oh, M. Luna, and M. Schweiger, “Colloids and Surfaces A : Physicochemical and Engineering Aspects Effect of particle size distribution on slurry rheology : Nuclear waste simulant slurries,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 384, pp. 304–310, 2011.
[17] M. S. Bahniuk, H. Pirayesh, H. D. Singh, J. A. Nychka, L. D. Unsworth, “Bioactive Glass 45S5 Powders: Effect of Synthesis Route and Resultant Surface Chemistry and Crystallinity on Protein Adsorption from Human Plasma” Biointerphases, vol. 7, p. 41, 2012.