نوع مقاله : مقاله یادداشت پژوهشی

نویسندگان

1 پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

2 پژوهشکده نیمه هادی‌ها، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

10.30501/jamt.2021.233515.1095

چکیده

در این پژوهش، نانوالیاف الکتروریسی­ شده TiO2/PVP با استفاده از دو نوع جمع‌کننده­ ی صفحه تخت ساکن و استوانه چرخان تهیه شدند و اثر نوع جمع‌کننده و غلظت پلیمر PVP در محلول سُلTIP/PVP (3، 5 و 7 درصد وزنی) بر ریخت‌شناسی نانوالیاف تهیه ­شده، به کمک تصاویر SEM و تعیین میانگین قطر نانوالیاف و انحراف معیار آن‌ها، بررسی شدند. سرعت چرخش استوانه برای همه نمونه‌های تهیه‌شده با آن 500 دور در دقیقه بود، درحالی‌که دیگر شرایط الکتروریسی اعم از ولتاژ، سرعت تزریق، فاصله نوک سوزن تا سطح جمع‌کننده و نوع سوزن برای هر جفت از نمونه‌های تهیه‌شده از هریک ازمحلول‌های سُل و دو نوع جمع‌کننده یکسان بود. میانگین قطر نانوالیاف TiO2/PVP تولید­شده با استوانه چرخان و انحراف معیار آن از 58 ± 144 نانومتر (از سُل حاوی 3 درصد وزنی PVP و تحت ولتاژ 10 کیلو‌ولت) به 71 ± 122 نانومتر (از سُل حاوی 5 درصد وزنی PVP و تحت ولتاژ 15 کیلو‌ولت) کاهش نشان داد که به‌مراتب کمتر از نمونه‌های مشابه تولید­شده با صفحه تخت ساکن بودند. با افزایش غلظت پلیمر به 7 درصد وزنی، میانگین قطر نانوالیاف TiO2/PVP تولید­شده با استوانه چرخان و صفحه تخت ساکن به‌ترتیب 135 ± 292 و 122 ± 258 نانومتر به‌دست آمد. این نتایج نشان می ­دهد که با افزایش غلظت پلیمر در محلول سُل TIP/PVP، باید سرعت چرخش استوانه جمع‌کننده را متناسب با آن افزایش داد تا بتوان نانوالیاف با قطر مورد نظرتولید کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effects of Rotating Drum and Polymer Concentration on Morphology of Electrospun TiO2/PVP Nanofibers

نویسندگان [English]

  • Mohammad Reza Vaezi 1
  • Sorayya Mirmohammad Sadeghi 1
  • Asghar Kazemzadeh 2

1 Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

2 Department of Semiconductors, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

چکیده [English]

Abstract     In this research work, electrospun TiO2/PVP nanofibers were prepared by using two different collectors, i.e., flat stationary plate and rotating drum. The effects of these collectors in conjunction with polymer concentration in TIP/PVP sol solutions (i.e., 3, 5, and 7 wt. %) were investigated on morphologies of the as-spun TiO2/PVP composite nanofibers. SEM micrographs were used for determination of the average 
nanofiber diameters and their standard deviations (SDs). Rotating speed of the collecting drum was set at 500 rpm for all samples prepared by it, while other electrospinning parameters (i.e., applied voltage, flow rate, tip-to-collector distance, and needle gage) were the same for the counterpart samples prepared from each of sol solutions by two types of collectors, throughout the experiment. It was observed that TiO2/PVP nanofibers electrospun by rotating drum have average diameters and SD of 144 ± 58 nm (from sol solution with 3 wt. % PVP at applied voltage of 10 kV) and 122 ± 71 nm (from sol solution with 5 wt. % PVP at applied voltage of 15 kV). These magnitudes were pretty much lower than the average diameters of TiO2/PVP nanofiber prepared by a flat stationary plate. The average diameters of TiO2/PVP nanofiber prepared by flat stationary plate and rotating drum were 258 ± 122 and 292 ± 135 nm, respectively when polymer concentration in TIP/PVP sol solution increased to 7 wt. %. It is clearly shown that by increasing polymer concentration in electrospinning solution, the average diameter of the electrospun TiO2/PVP nanofibers increased, afterward. Therefore, rotational speed of collecting drum should be increased rationally if there is a need for preparation of finer electrospun nanofibers.

کلیدواژه‌ها [English]

  • Electrospinning
  • TiO2/PVP Nanofibers
  • Rotating drum
  • flat stationary Plate
  • morphology
  1. Lavielle, N., Hebraud, A., Schlatter, G., Thöny-Meyer, L., Rossi, R. M., Popa, A. -M., "Simultaneous electrospinning and electrospraying: A straightforward approach for fabricating hierarchically structured composite membranes", ACS Applied Materials and Interfaces, Vol. 5, No. 20, (2013), 10090-10097. https://doi.org/10.1021/am402676m
  2. Sabzroo, N., Rohani Bastami, T., Karimi, M., Heidari, T., "Optimization of electrospinning conditions for magnetic poly (acrylonitrile- co- acrylic acid) nanofibers", Journal of Nanostructures, Vol. 9, No. 2, (2019), 301-315. https://jns.kashanu.ac.ir/article_88811_07646726d890973ed0474d837f648ac3.pdf
  3. Alfaro De Pra, M. A., Ribeiro-do-Valle, R. M., Maraschin, M., Veleirinho, B., "Effect of collector design on the morphological properties of polycaprolactone electrospun fibers", Materials Letters, Vol. 193, No. 1, (2017), 154-157. https://doi.org/10.1016/j.matlet.2017.01.102
  4. Yıldız Çavdar, F., Uğuza, A., "Comparative study of electrospinning process for two different collectors: the effect of the collecting method on the nanofiber diameters", Mechanical Engineering Journal, Vol. 6, No. 1, (2019), 18-00298. https://doi.org/10.1299/mej.18-00298
  5. Filatov, Y., Budyka, A., Kirichenko, V., Electrospinning of Micro-and Nanofibers: Fundamentals in Separation and Filtration Processes, Begell House Publishers, USA, (2007). http://www.begellhouse.com/books
  6. Katta, P., Alessandro, M., Ramsier, R. D., Chase, G. G., "Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector", Nano Letter, Vol. 4, No. 11, (2004), 2215-2218. https://doi.org/10.1021/nl0486158
  7. Zaarour, B., Zhu, L., Huang, C., Jin, X., "Enhanced piezoelectric properties of randomly oriented and aligned electrospun PVDF fibers by regulating the surface morphology", Journal of Applied Polymer Science, Vol. 136, No. 6, (2019), 47049. https://doi.org/10.1002/app.47049
  8. Sarlak, N., Nejad, M. A. F., Shakhesi, S., Shabani, K. "Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD)", Chemical Engineering Journal, Vol. 210,(2012), 410-416. https://doi.org/10.1016/j.cej.2012.08.087
  9. Farhang Dehghan, S., Maddah, B., Golbabaei, F., "The development of nanofibrous media filter containing nanoparticles for removing particles from air stream", Iranian Journal of Health and Environment. Vol. 8, No. 4, (2016), 509-524. (In Farsi). http://ijhe.tums.ac.ir/article-1-5511-en.html
  10. Mali, S. S., Shim, C. S., Kim, H., Patil, J. V., Ahn, D. H., Patil, P. S., Hong, C. K., "Evaluation of various diameters of titanium oxide nanofibers for efficient dye sensitized solar cells synthesized by electrospinning technique: A systematic study and their application", Electrochimica Acta, Vol. 166, (2015), 356-366. https://doi.org/10.1016/j.electacta.2015.03.113
  11. Mirmohammad Sadeghi, S., Vaezi, M., Kazemzadeh, A., Jamjah, R., "Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method", Journal of Applied Polymer Science, Vol. 135, No. 23, (2018), 46337. https://doi.org/10.1002/app.46337
  12. Mirmohammad Sadeghi, S., Vaezi, M., Kazemzadeh, A., Jamjah, R., "Effects of polymer concentration on rheological behavior of TiO2/PVP sol solutions and morphology of electrospun nanofibers", Proceedings of 1st International Conference on Rheology (ICOR 2019), Tehran, Iran, (17-18 Dec. 2019).
  13. Im, J. S., Kim, M. I., Lee, Y. S., "Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation", Materials Letters, Vol. 62, No. 21-22, (2008), 3652-3655. https://doi.org/10.1016/j.matlet.2008.04.019
  14. He, X., Yang, C. P., Zhang, G. L., Shi, D. W., Huang, Q. A., Xiao, H. B., Liu, Y., Xiong, R., "Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment", Materials & Design, Vol. 160, No. 1, (2016), 74-80. https://doi.org/10.1016/j.matdes.2016.05.025
  15. Tohidloo, M. H., Shafiei, S. S., Shiralipour, F., "Preparation and evaluation of polycaprolactone /amine functionalized carbon nanotube electrospun nanocomposite scaffold containing mesenchymal stem cells for use in hard tissue engineering", Journal of Advance Materials and Technologies (JAMT), Vol. 8, No. 4, (2020), 19-30. (In Farsi). https://doi.org/ 10.30501/jamt.2020.93226
  16. Zadehnajar, P., Karbasi, S., Akbari, B., Mirmusavi, M. H., "Evaluation of physical and mechanical properties of electrospinning nanocomposite scaffolds poly ɛ-caprolactone-gelatin/multi walled carbon nanotube", Journal of Advance Materials and Technologies (JAMT), Vol. 7, No. 4, (2019), 93-100. (In Farsi). https://doi.org/10.30501/jamt.2019.84403
  17. Najafiasl, M., Osfouri, S., Azin, R., Zaeri, S.,"Alginate-based electrospun core/shell nanofibers containing dexpanthenol: A good candidate for wound dressing", Journal of Drug Delivery Science and Technology, Vol. 57, (2020), 101708. https://doi.org/10.1016/j.jddst.2020.101708
  18. Cao, Y., Tang, P., Han, Y., Qiu, W., "Synthesis of La2Ti2O7 flexible self-supporting film and its application in flexible energy storage device", Journal of Alloys and Compounds, Vol. 842, (2020), 155581. https://doi.org/10.1016/j.jallcom.2020.155581
  19. Khatri, M., Ahmed, F., Ali, S., Mehdi, M., Ullah, S., Duy-Nam, P., Khatri, Z., Kim, I. -S., "Photosensitive nanofibers for data recording and erasing", The Journal of The Textile Institute, Vol. 112, No. 3, (2020), 429-438. https://doi.org/10.1080/00405000.2020.1761681
  20. Dzenis, Y., "Spinning continuous fibers for nanotechnology", Science, Vol. 304, No. 5679, (2004), 1917-1919. https://science.sciencemag.org/content/304/5679/1917
  21. Fong, H., Chun, I., Reneker, D. H., "Beaded nanofibers formed during electrospinning", Polymer, Vol. 40, No. 16, (1999), 4585-4592. https://doi.org/10.1016/S0032-3861(99)00068-3
  22. Reneker, D. H., Yarin, A. L., Fong, H., Koombhongse, S., "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning", Journal of Applied Physics, Vol. 87, No. 9, (2000), 4531-4547. https://doi.org/10.1063/1.373532
  23. Shin, Y. M., Hohman, M. M., Brenner, M. P., Rutledge, G. C., "Experimental characterization of electrospinning: the electrically forced jet and instabilities", Polymer, Vol. 42, No. 25, (2001), 09955-09967. https://doi.org/10.1016/S0032-3861(01)00540-7
  24. Hohman, M. M., Shin, M., Rutledge, G. C., Brenner, M. P., "Electrospinning and electrically forced jets. I. Stability theory", Physics of Fluids, Vol. 13, No. 8, (2001), 2201-2220. https://doi.org/10.1063/1.1383791
  25. Hohman, M. M., Shin, M., Rutledge, G. C., Brenner, M. P., "Electrospinning and electrically forced jets. II. Applications", Physics of Fluids, Vol. 13, No. 8, (2001), 2221-2236. https://doi.org/10.1063/1.1384013
  26. Dai, H., Gong, J., Kim, H., Lee D., "A novel method for preparing ultra−fine alumina−borate oxide fibres via an electrospinning technique", Nanotechnology, Vol. 13, No. 5, (2002), 674-677. https://doi.org/10.1088/0957-4484/13/5/327
  27. Larsen, G., Velarde-Ortiz, R., Minchow, K., Barrero, A., Loscertales, I. G., "A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol−gel chemistry and electrically forced liquid jets", Journal of American Chemical Society, Vol. 125, No. 5, (2003), 1154-1155. https://doi.org/10.1021/ja028983i
  28. Li, D., Wang, Y., Xia, Y., "Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays", Nano Letters, Vol. 3, No. 8, (2003), 1167-1171. https://doi.org/10.1021/nl0344256
  29. Xue, J., Xie, J., Liu, W., Xia, Y., "Electrospun nanofibers: New concepts, materials, and applications", Accounts of Chemical Research, Vol. 50, No. 8, (2017), 1976-1987. https://doi.org/10.1021/acs.accounts.7b00218
  30. Reneker, D. H., Fong, H., (Eds.), Polymeric Nanofibers, ACS Symposium Series,Washington, DC, USA, Vol. 918, (2006). https://doi.org/10.1021/bk-2006-0918.ch001
  31. Reneker, D. H., Yarin, A. L., "Electrospinning jets and polymer nanofibers", Polymer, Vol. 49, No. 10, (2008), 2387-2425. https://doi.org/10.1016/j.polymer.2008.02.002
  32. He, J. -H., Wu, Y., Zuo, W. -W., "Critical length of straight jet in electrospinning", Polymer, Vol. 46, No. 26, (2005), 12637-12640. https://doi.org/10.1016/j.polymer.2005.10.130
  33. Shin, Y. M., Hohman, M. M., Brenner, M. P., Rutledge G. C., "Electrospinning: A whipping fluid jet generates submicron polymer fibers", Applied Physics Letters, Vol. 78, No. 8, (2001), 1149-1151. https://doi.org/10.1063/1.1345798
  34. Collins, G., Federici, J., Imura, Y., Catalani, L. H., "Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications", Journal of Applied Physics, Vol. 111, No. 4, (2012), 044701. https://doi.org/10.1063/1.3682464
  35. Persano, L., Camposeo, A., Tekmen, C., Pisignano, D., "Industrial upscaling of electrospinning and applications of polymer nanofibers: A review", Macromolecular Materials and Engineering, Vol. 298, No. 5, (2013), 504-520. https://doi.org/10.1002/mame.201200290
  36. Livage, J., Sanchez, C., Henry, M., Doeuff, S., "The chemistry of the sol-gel process", Solid State Ionics, Vol. 32-33, Part 2, (1989), 633-638. https://doi.org/10.1016/0167-2738(89)90338-X
  37. Gu, S., Ren, J., Vancso, G., "Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers", European Polymer Journal, Vol. 41, No. 11, (2005), 2559-2568. https://doi.org/10.1016/j.eurpolymj.2005.05.008
  38. Patra, S. N., Easteal, A. J., Bhattacharyya, D., "Parametric study of manufacturing poly(lactic) acid nanofibrous mat by electrospinning", Journal of Material Science, Vol. 44, No. 2, (2009), 647-654. https://doi.org/10.1007/s10853-008-3050-y
  39. Someswararao, M. V., Dubey, R. S., Subbarao, P. S. V., Singh, S., "Electrospinning process parameters dependent investigation of TiO2 nanofibers", Results in Physics, Vol. 11, No. 1, (2018), 223-231. https://doi.org/10.1016/j.rinp.2018.08.054
  40. Hadi, Z., Dabirian, F., Safi, S., Zojajian, A., Firoozi, M., "Fabrication of aligned nanofibers by manipulated rotating drum method and studying the effective parameters on fibers alignment by image processing", Iranian Journal of Polymer Science and Technology, Vol. 25, No. 5, (2013), 339-350. (In Farsi). https://doi.org/10.22063/JIPST.2013.606