نوع مقاله : مقاله کامل پژوهشی

نویسنده

گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، مجتمع آموزش عالی گناباد، گناباد، خراسان رضوی، ایران

چکیده

در این تحقیق، رسوب­ دهی الکتروشیمیایی آنتیموان از محلول سولفیدی قلیایی مطالعه شد. اثر دما (بازه دمایی 45 تا 65 درجه سلسیوس) و زمان الکترولیز (صفر تا 6 ساعت) بر میزان بازیابی آنتیموان، بازدهی جریان و انرژی مخصوص بررسی شد. همچنین سینتیک رسوب ­دهی شیمیایی مطالعه و از نتایج آن برای توسعه الگوی ریاضی استفاده شد. نتایج نشان می ­دهد که افزایش دمای الکترولیز باعث کاهش بازیابی آنتیموان، کاهش بازدهی جریان و همچنین افزایش مصرف انرژی می ­شود. آزاد شدن گاز هیدروژن در کاتد در غلظت­ های پایین آنتیموان در محلول و همچنین انجام واکنش‌های ناخواسته در مجاورت آند و کاتد، باعث مصرف جریان الکتریکی می ­شود و بازدهی جریان و بازیابی آنتیموان را کاهش می ­دهد. بیشترین بازیابی آنتیموان در دمای 45 درجه سلسیوس و در 6 ساعت، 70 درصد وزنی و بیشترین بازدهی جریان در همان دما و پس از یک ساعت الکترولیز، به میزان 90 درصد به ­دست آمد. مقدار انرژی مصرفی برای رسوب یک کیلوگرم آنتیموان در بازه دمایی آزمایش­ ها، 35/1 تا 28/2 کیلووات‌ ساعت بود. همچنین، کمترین میزان انرژی مصرفی، مربوط به دمای 45 درجه سلسیوس بود. بررسی‌های سینتیکی نشان می ­دهد که معادله اویلر- اروفیف می­ تواند با دقت بالایی در تخمین میزان بازیابی آنتیموان برحسب زمان و دما استفاده شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Temperature on the Electrowinning of Antimony from Alkaline Sulfide Solution

نویسنده [English]

  • Seyyed Mohsen Moosavi Nejad

Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Gonabad, Gonabad, Khorasan Razavi, Iran

چکیده [English]

In this research, the electrodeposition of antimony was studied in alkaline sulfide solution. The effect of time and temperature of electrowinning step on antimony recovery, current efficiency and specific energy in the temperature range of 45-65 °C for 0-6 h was investigated. Furthermore, the kinetics of electrodeposition was studied, and the results were used in developing mathematical model. Results show that increasing the temperature of electrowinning decreases antimony recovery, current efficiency and increases energy consumption. Hydrogen evolution at the cathode at low concentration of antimony in the solution and occurrence of harmful reactions at the electrodes lead to energy consumption and decrease current efficiency and antimony recovery. Maximum antimony recovery was 70 % after 6 h electrodeposition at 45 °C and maximum current efficiency was 90 % after one hour electrodeposition at the same temperature. The energy consumed per one kilogram of deposited antimony in the temperature range of the experiments was in the range of 1.35-2.28 kWh. Minimum value of consumed energy was achieved at 45 °C. The kinetic investigation shows that Avrami- Erofeyev equation can be used for prediction of antimony recovery with high accuracy.

کلیدواژه‌ها [English]

  • Antimony Recovery
  • Electrodeposition
  • Alkaline Sulfide Solution
  • Temperature Effect
  • Kinetic
  1. Ye, L., Ouyang, Z., Chen, Y., "Ferric chloride leaching of antimony from stibnite", Hydrometallurgy, Vol. 189, (2019), 210-217. https://doi.org/10.1016/j.hydromet.2019.04.021
  2. Sun, Q., Liu, C., Alves, M. E., Ata-Ul-Karim, S. T., Zhou, D. M., He, J. Z., Cui, P. X., Wang, Y. J., "The oxidation and sorption mechanism of Sb on δ-MnO2", Chemical. Engineering Journal, Vol. 342, (2018), 429-437. https://doi.org/10.1016/j.cej.2018.02.091
  3. Anderson, C. G., "The metallurgy of antimony", Chemie der Erde, Vol. 72, (2012), 3-8. https://doi.org/10.1016/j.chemer.2012.04.001
  4. Anderson, C. G., Nordwick, S. M., Krys, L. E., "Antimony separation process", USA Patent, No. 5290338, (1994). https://patents.google.com/patent/US5290338A/en
  5. Abdollahy, M., Raissi, A., Naderi, H., "Beneficiation of Lakhshak antimony ore using flotation method", Oloome Zamin, Vol. 17, No. 65, (2007), 60-69. (In Farsi). http://www.gsjournal.ir/article_58187.html
  6. Yang, J. G., Tang, C. B., Chen, Y. M., Tang, M. T., "Separation of antimony from a stibnite concentrate through a low-temperature smelting process to eliminate SO2 emission", Metallurgical and Materials Transactions. B, Vol. 42, No. 1, (2011), 30-36. https://doi.org/10.1007/s11663-010-9453-6
  7. Smincakova, E., Komova, L., "Behaviour of stibnite in alkaline leaching", Journal of Engineering: Annals of Faculty of Engineering Hunedoara, Vol. 1, (2007), 183-188. https://docplayer.net/156487514-Behaviour-of-stibnite-in-alkaline-leaching.html
  8. Anderson, C. G., Twidwell, L. G., "Antimony, arsenic, gold, mercury and tin separation, recovery and fixation by alkaline sulfide hydrometallurgy", Proceedings of 6th International Symposium on Hydrometallurgy, Society for Mining, Metallurgy, and Exploration Incorporation, Phoenix, AZ (USA), (2008), 348-356. https://www.tib.eu/en/search/id/BLCP%3ACN072912881/Antimony-Arsenic-Gold-Mercury-and-Tin-Separation/
  9. Zhang, Y., Wang, C., Ma, B., Jie, X., Xing, P., "Extracting antimony from high arsenic and gold-containing stibnite ore using slurry electrolysis", Hydrometallurgy, Vol. 186, (2019), 284-291. https://doi.org/10.1007/s11663-010-9453-610.1016/j.hydromet.2019.04.026
  10. Ye, L., Ouyang, Z., Chen, Y., Wang, H., Xiao, L., Liu, S., "Selective separation of antimony from a Sb-Fe mixed solution by hydrolysis and application in the hydrometallurgical process of antimony extraction", Separation and Purification Technology, Vol. 228, (2019), 115753. https://doi.org/10.1016/j.seppur.2019.115753
  11. Faryabi, M., Kazazi, M.,"Electrochemical deposition of manganese hexacyanoferrate nanoparticles on a graphite substrate for supercapacitor application", Journal of Advanced Materials and Technologies (JAMT), Vol. 8, No. 3, (2019), 13-20. https://doi.org/10.30501/JAMT.2019.93225
  12. Mobini Dehkordi, B., Shayegh Borujeny, B., Saeri, M. R., Moradi Zadeh, M., Abdollahi, Y., Sharifian, Sh., "Investigation of electrical resistance and electrophoretic deposition of Al2O3-TiO2 nanoparticles in different alcoholic environments", Journal of Advanced Materials and Technologies (JAMT), Vol. 5, No. 2, (2016), 9-16. https://doi.org/10.30501/JAMT.2637.70333
  13. Nordwick, S. M., Anderson, C. G., “"Advances in antimony electrowinning at the sunshine mine", Proceedings of the Fourth International Symposium on Hydrometallurgy Fundamentals, Technology and Innovations, Salt Lake City, Utah (USA), (1993), 1107-1128. https://www.researchgate.net/publication/284345239_Advances_in_Antimony_Electrowinning_at_the_Sunshine_Mine
  14. Awe, A., Sundkvist, J., Bolin, N., Sandstrom, A., "Process flowsheet development for recovering antimony from Sb-bearing copper concentrates", Minerals Engineering, Vol. 49, (2013), 45-53. https://doi.org/10.1016/j.mineng.2013.04.026
  15. Awe, A., Sandstrom, A., "Electrowinning of antimony from model sulphide alkaline solutions", Hydrometallurgy, Vol. 137, (2013), 60-67. https://doi.org/10.1016/j.hydromet.2013.04.006
  16. Awe, A., Sandstrom, A., "Selective leaching of arsenic and antimony from a tetrahedrite rich complex sulphide concentrate using alkaline sulphide solution", Minerals Engineering, Vol. 23, No. 15, (2010), 1227-1236. https://doi.org/10.1016/j.mineng.2010.08.018
  17. Smincakova, E., Komorova, L., "Kinetic study of leaching stibnite in sodium hydroxide solution", International Journal of Engineering: Annals of Faculty of Engineering Hunedoara, Vol. 1, (2010), 183-187. http://annals.fih.upt.ro/pdf-full/2009/ANNALS-2009-3-38.pdf
  18. Mahlangu, T., Gudyanga, F. P., Simbi, D. J., "Reductive leaching of stibnite (Sb2S3) flotation concentrates using metallic iron in a hydrochloric acid medium II: Kinetics", Hydrometallurgy, Vol. 88, No. 1-4, (2007), 132-142. https://doi.org/10.1016/j.hydromet.2007.03.011
  19. Moosavi Nezhad, S. M., "Investigation on effect of crystallization step in antimony recovery using hydrometallurgical method in alkaline sulphide solutions", Journal of New Materials, Vol. 10, No. 38, (2020), 79-94. (In Farsi). http://jnm.miau.ac.ir/article_3903.html
  20. Moosavi Nezhad, S. M., Farvandi, K., "Optimization of antimony leaching process from Sefidabeh ore using dissolution in alkaline sulfide solution", Proceedings of 4th National Conference on Materials Enginerring, Chemical Engineering and Industerial Safety, Iran, 10 October 2018, (2018). (In Farsi). https://civilica.com/doc/839135/
  21. Awe, A., "Antimony recovery from complex copper concentrates through hydro- and electrometallurgical processes", Doctoral dissertation, Lulea University of Technology, Sweden, (2013). https://www.researchgate.net/publication/243971042_AntimonyRecovery_from_Complex_Copper_Concentrates_through_Hydro-and_Electrometallurgical_Processes
  22. Ehsani, A., Yazıcı, E. Y., Deveci, H., "The effect of temperature on the electrowinning of copper", Proceedings of 18th International Metallurgy & Materials Congress, Turkey, 29 September-1 October 2016, (2016). https://www.researchgate.net/publication/309291893_The_Effect_of_Temperature_on_the_Electrowinning_of_Copper
  23. Moosavi Nezhad, S. M., Ordooni, A., "Antimony extraction from Sefidabeh ore using leaching in alkaline solution of caustic soda", Proceedings of 16th Student Scientific Conference On Iranian Materials and Metallurgical Engineering, Iran, 18-19 Nov 2019, (2019). (In Farsi). https://civilica.com/doc/824123/