نوع مقاله : مقاله کامل پژوهشی

نویسندگان

پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

چکیده

بسپارهای تخریب ­پذیر زیستی با ماهیت غیرسمّی و زیست­ سازگار، در مهندسی بافت و رهایش دارو کاربرد دارند. مصرف ریزذرات بسپار طبیعی، به‌صورت مستقل یا در ترکیب با مواد دیگر، با کاربردهای گوناگون ازجمله زیست ­مواد تزریق­ پذیر، در حال گسترش است. در این پژوهش، برهم‌کنش بسپارهای زیستی ژلاتین و سدیم ­آلژینات در ساخت ریزکرات، مطالعه شد. برهم‌کنش این دو بسپار، متأثّر از pH، بار الکتریکی و غلظت آن‌ها است و واکنش الکترواستاتیک بین پروتئین ­های با بار مثبت و پلی ­ساکاریدهای آنیونی، منجر به تشکیل فازهای محلول و نامحلول می­ شود؛ بنابراین، تأثیر نسبت مخلوط کلوئیدی و pH، در هم­ انباشتی بررسی گردید. در ابتدا، وزن مولکولی ژلاتین با روش حلال ­زدایی، باریک شد و رنگ ­نگاری ژل ­تراوایی (GPC)، خروج ژلاتین با وزن مولکولی کم را تأیید کرد. بررسی مایع شناور مخلوط­ های کلوئیدی با آزمون طیف ­سنجی مرئی فرابنفش (UV-Vis)، نشان داد که هم­ انباشتی بهینه، در نسبت ژلاتین به سدیم ­آلژینات برابر چهار و pH برابر 65/3 رخ داده است. طی این فرایند، ریزکرات در اندازه 10 تا 25 میکرومتر با سطوحی صاف تشکیل شد و با افزایش مقدار جنیپین، تمایل به هم­نشینی ذرات مستقل ریزکرات بیشتر می ­شود. تغییر اندک ژلاتین در طیف دورنگ‌نمایی دورانی (CD)، برهم‌کنش با سدیم ­آلژینات را نشان می‌دهد و مشاهده گروه عاملی آمید در طیف ­سنجی فروسرخ تبدیل فوریه (FTIR) نیز، آن را تأیید می‌کند. نتایج دمانگاشت آزمون DSC، نشان‌دهنده­ افزایش دمای تخریب ریزکرات دارای مقادیر بیشتر جنیپین بوده است.

کلیدواژه‌ها

عنوان مقاله [English]

Preparation and Characterization of Microspheres Based on Gelatin-Sodium Alginate-Genipin by the Formation of Polyelectrolyte Complex

نویسندگان [English]

  • Majid Rastegar Ramsheh
  • Aliasghar Behnamghader
  • Ali khanlarkhani

Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

چکیده [English]

The Biodegradable polymers with non-toxic and biocompatible nature have applications in tissue engineering and drug delivery. The use of natural polymer microbeads independently or in combination with other materials is gaining ground in various applications including injectable biomaterials. In this research, the interaction of gelatin and sodium alginate biopolymers was investigated in the manufacture of microsphere. The interaction between these two polymers was influenced by their pH, charge, and concentration. The electrostatic reaction between positively charged proteins and anionic polysaccharides led to the formation of soluble and insoluble phases. Therefore, the effect of pH and colloidal ratio was examined on the Coacervation. First, gelatin molecular weight was narrowed by Desolvation method, and GPC confirmed the elimination of low molecular weight gelatin. The supernatants of colloidal mixtures were analyzed by UV-Vis test, and the results revealed that optimum coacervation occurred at a gelatin/sodium alginate ratio of four and a pH value of 3.65. During this process, microsphere formed with smooth surfaces in a size range of 10-25 µm. An increase in the amount of genipin raised the aggregation tendency in independent microbeads. A slight change of gelatin in Circular Dichroism (CD) reflected the interaction with sodium alginate, which was confirmed by the amide functional group in the Fourier-transform infrared (FTIR) spectroscopy. Results of Thermogram of Differential Scanning Calorimetry (DSC) indicated an increase in the degradation temperature of microspheres containing higher amounts of genipin.

کلیدواژه‌ها [English]

  • Microsphere
  • Gelatin
  • Na Alginate
  • Genipin
  • Polyelectrolyte
  1.  

     

    1. Ramalapa, B., Crasson, O., Vandevenne, M., Gibaud, A., Garcion, E., Cordonnier, T., "Protein–polysaccharide complexes for enhanced protein delivery in hyaluronic acid templated calcium carbonate microparticles", Journal of Materials Chemistry B, Vol. 5, No. 35, (2017), 7360-7368. https://doi.org/10.1039/c7tb01538k
    2. Ghosh, A. K., Bandyopadhyay, P., "Polysaccharide-protein interactions and their relevance in food colloids", The Complex World of Polysaccharides, Vol. 14, (2012), 395-406. https://doi.org/10.5772/50561
    3. Turgeon, S. L., Schmitt, C., Sanchez, C., "Protein–polysaccharide complexes and coacervates", Current Opinion in Colloid & Interface Science, Vol. 12, No. 4-5, (2007), 166-178. https://doi.org/10.1016/j.cocis.2007.07.007
    4. Shivani, Sujitha, H., "Review article on microparticles", International Journal of Pharmacy and Analytical Research, Vol. 4, No. 3, (2015), 302-309. https://www.ijpar.com/articles/2015/4/3
    5. "Microspheres market by type (hollow, solid), raw material (glass, ceramic, fly ash, polymer, metallic), application (construction composites, medical technology, cosmetics & personal care, automotive, oil & gas)-Global forecast to 2022", Report Code: AD 2998, (June 2017). https://www.marketsandmarkets.com/Market-Reports/microsphere-market-1086.html
    6. Panyam, J., Labhasetwar, V., "Biodegradable nanoparticles for drug and gene delivery to cells and tissue", Advanced Drug Delivery Reviews, Vol. 55, No. 3, (2003), 329-347. https://doi.org/10.1016/s0169-409x(02)00228-4
    7. Jawahar, N., Meyyanathan, S. N., "Polymeric nanoparticles for drug felivery and targeting: A comprehensive review", International Journal of Health & Allied Sciences, Vol. 1, No. 4, (2012), 217-223. https://doi.org/10.4103/2278-344x.107832
    8. Azadi, A., Hamidi, M., Rouini, M. -R., "Methotrexate-loaded chitosan nanogels as ‘Trojan Horses’ for drug delivery to brain: Preparation and in vitro/in vivo characterization", International Journal of Biological Macromolecules, Vol. 62, (2013), 523-530. https://doi.org/10.1016/j.ijbiomac.2013.10.004
    9. Yousefpour, P., Atyabi, F., Dinarvand, R., Vasheghani-Farahani, E. "Preparation and comparison of chitosan nanoparticles with different degrees of glutathione thiolation", DARU Journal of Pharmaceutical Sciences, Vol. 19, No. 5, (2011), 367-375. http://daru.tums.ac.ir/index.php/daru/article/view/401
    10. Rampino, A., Borgogna, M., Blasi, P., Bellich, B., Cesàro, A., "Chitosan nanoparticles: Preparation, size evolution and stability", International Journal of Pharmaceutics, Vol. 455, No. 1-2, (2013), 219-228. https://doi.org/10.1016/j.ijpharm.2013.07.034
    11. Corredig, M., "Molecular understanding of the interaction of dairy proteins with other food biopolymers", Dairy-Derived Ingredients, Elsevier, (2009), 371-393. https://doi.org/10.1533/9781845697198.3.371
    12. Aumiller, J., Davis, B., Keating, C., "Phase separation as a possible means of nuclear compartmentalization", International Review of Cell and Molecular Biology, Vol. 307, Elsevier, (2014), 109-149. https://doi.org/10.1016/b978-0-12-800046-5.00005-9
    13. De Kruif, C., Weinbreck, F., de Vries, R., "Complex coacervation of proteins and anionic polysaccharides", Current Opinion in Colloid & Interface Science, Vol. 9, No. 5, (2004), 340-349. https://doi.org/10.1016/j.cocis.2004.09.006
    14. Khalilah, A. K., Suhaimi, M., Rosfarizan, M., Arbakariya B. A., Siti, A. A., Farrah, A. D., Mohd Yazid, A. M., " Encapsulation of bifidobacterium pseudocatenulatum strain G4 within bovine gelatin-genipin-sodium alginate combinations: Optimisation approach using face central composition design-response surface methodology (FCCD-RSM)", International Journal of Microbiology, Vol. 2019, Article ID: 4208986, 11 pages, (2019). https://doi.org/10.1155/2019/4208986
    15. Khalilah, A. K., Suhaimi, M., Rosfarizan, M., Arbakariya B. A., Mohd Yazid, A. M., "Optimization of fish gelatin-alginate-genipin as encapsulating matrices for probiotic application using FCCD-RSM", 2012 IEEE Symposium on Humanities, Science and Engineering Research, IEEE, (2012), 1283-1288. https://doi.org/10.1109/shuser.2012.6268809
    16. Yun, L., Zhang, C., Zhao, J., Yi, G., Li, C., Ping, Z., "Preparation and properties of gelatin/sodium alginate (cross-linked with genipin) interpenetrating polymeric network films", Acta Materiae Compositae Sinica, Vol. 32, No. 4, (2015), 997-1006. https://doi.org/10.13801/j.cnki.fhclxb.20140925.002
    17. Devi, N., Kakati, D., "Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex", Journal of Food Engineering, Vol. 117, No. 2, (2013), 193-204. https://doi.org/10.1016/j.jfoodeng.2013.02.018
    18. Coester, C., Langer, K., Von Briesen, H., Kreuter, J., "Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake", Journal of Microencapsulation, Vol. 17, No. 2, (2000), 187-193. https://doi.org/10.1080/026520400288427
    19. Hermanto, S., Fatimah, W., "Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis", Journal of Food and Pharmaceutical Sciences, Vol. 1, No. 3, (2013), 68-73. https://doi.org/10.14499/jfps
    20. Das, M., Suguna, P., Prasad, K., Vijaylakshmi, J., Renuka, M., "Extraction and characterization of gelatin: a functional biopolymer", International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 9, No. 9, (2017), 239-242. https://doi.org/10.22159/ijpps.2017v9i9.17618
    21. Eysturskarð, J., "Mechanical properties of gelatin gels; Effect of molecular weight and molecular weight distribution", Doctoral Thesis, (2010). http://hdl.handle.net/11250/245635
    22. Afzal, S., Khan, S., Ranjha, N., Jalil, A., Riaz, A., Haider, M., "The structural, crystallinity, and thermal properties of pH-responsive interpenetrating gelatin/sodium alginate-based polymeric composites for the controlled delivery of cetirizine HCl", Turkish Journal of Pharmaceutical Sciences, Vol. 15, No. 1, (2018), 63-76. https://doi.org/10.4274/tjps.64326
    23. Lin, Y., Chen, Q., Luo, H., Lin, Y., "Preparation and characterization of N-(2-carboxybenzyl) chitosan as a potential pH-sensitive hydrogel for drug delivery", Carbohydrate Research, Vol. 342, No. 1, (2007), 87-95. https://doi.org/10.1016/j.carres.2006.11.002
    24. Shinde, U., Nagarsenker, M., "Characterization of gelatin-sodium alginate complex coacervation system", Indian Journal of Pharmaceutical Sciences, Vol. 71, No. 3, (2009), 313-317. https://doi.org/10.4103/0250-474X.56033
    25. Saravanan, M., Rao, K., "Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: Influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules", Carbohydrate Polymers, Vol. 80, No. 3, (2010), 808-816. https://doi.org/10.1016/j.carbpol.2009.12.036
    26. Sundarrajan, P., Eswaran, P., Marimuthu, A., Subhadra, L., Kannaiyan, P., "One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles", Bulletin of the Korean Chemical Society, Vol. 33, No. 10, (2012), 3218-3224. https://doi.org/10.5012/bkcs.2012.33.10.3218
    27. Manickam, B., Sreedharan, R., Elumalai, M., "‘Genipin’–the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: An overview", Current Drug Delivery, Vol. 11, No. 1, (2014), 139-145. https://doi.org/10.2174/15672018113106660059
    28. Devi, N., Hazarika, D., Deka, C., Kakati, D. K., "Study of complex coacervation of gelatin a and sodium alginate for microencapsulation of olive oil", Journal of Macromolecular Science, Part A, Vol. 49, No. 11, (2012), 936-945. https://doi.org/10.1080/10601325.2012.722854
    29. Hu, Y., Liu, L., Dan, W., Dan, N., Gu, Z., "Evaluation of 1-ethyl-3-methylimidazolium acetate based ionic liquid systems as a suitable solvent for collagen", Journal of Applied Polymer Science, Vol. 130, No. 4, (2013), 2245-2256. https://doi.org/10.1002/app.39298
    30. Fratzl, P., Collagen: Structure and mechanics, an introduction, Springer, Boston, MA, (2008), 1-13. https://doi.org/10.1007/978-0-387-73906-9_1
    31. Gómez-Guillén, M. C., Turnay, J., Fernández-Dıaz, M. D., Ulmo, N., Lizarbe, M. A., Montero, P., "Structural and physical properties of gelatin extracted from different marine species: A comparative study", Food Hydrocolloids, Vol. 16, No. 1, (2002), 25-34. https://doi.org/10.1016/s0268-005x(01)00035-2
    32. Fathima, N. N., Devi, R. S., Rekha, K. B., Dhathathreyan, A., "Collagen-curcumin interaction—A physico-chemical study", Journal of Chemical Sciences, Vol. 121, No. 4, (2009), 509-514. https://doi.org/10.1007/s12039-009-0061-4
    33. Rosenblum, G., Van den Steen, P. E., Cohen, S. R., Bitler, A., Brand, D. D., Opdenakker, G., Sagi, I., "Direct visualization of protease action on collagen triple helical structure", PLoS One, Vol. 5, No. 6, (2010), p. e11043. https://doi.org/10.1371/journal.pone.0011043
    34. Mitra, T., Sailakshmi, G., Gnanamani, A., Mandal, A. B., "Di-carboxylic acid cross-linking interactions improves thermal stability and mechanical strength of reconstituted type I collagen: Part I. oxalic acid", Journal of Thermal Analysis and Calorimetry, Vol. 105, No. 1, (2011), 325-330. https://doi.org/10.1007/s10973-011-1472-2
    35. Mu, C., Li, D., Lin, W., Ding, Y., Zhang, G., "Temperature induced denaturation of collagen in acidic solution", Biopolymers: Original Research on Biomolecules, Vol. 86, No. 4, (2007), 282-287. https://doi.org/10.1002/bip.20742
    36. He, L., Cai, S., Wu, B., Mu, C., Zhang, G., Lin, W., "Trivalent chromium and aluminum affect the thermostability and conformation of collagen very differently", Journal of Inorganic Biochemistry, Vol. 117, (2012), 124-130. https://doi.org/10.1016/j.jinorgbio.2012.08.017
    37. Wu, B., Mu, C., Zhang, G., Lin, W., "Effects of Cr3+ on the structure of collagen fiber", Langmuir, Vol. 25, No. 19, (2009), 11905-11910. https://doi.org/10.1021/la901577j
    38. Gayatri, R., Sharma, A. K., Rajaram, R., Ramasami, T., "Chromium (III)-induced structural changes and self-assembly of collagen", Biochemical and Biophysical Research Communications, Vol. 283, No. 1, (2001), 229-235. https://doi.org/10.1006/bbrc.2001.4713
    39. Karbassi, F., Haghbeen, K., Saboury, A. A., Rezaei-Tavirani, M., Ranjbar, B., "Calorimetric, spectrophotometric and circular dichroism studies on the impact of sodium dodecyl sulphate on the mushroom tyrosinase structure", Biologia-Bratislava, Vol. 59, No. 3, (2004), 319-326. http://biologia.savba.sk/59_3_04/Karbassi_F.pdf
    40. Gopal, R., Park, J. S., Seo, C. H., Park, Y., "Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides", International Journal of Molecular Sciences, Vol. 13, No. 3, (2012), 3229-3244. https://doi.org/10.3390/ijms13033229
    41. Přádný, M., Kopeček, J., "Hydrogels for site-specific oral delivery. poly [(acrylic acid)-co-(butyl acrylate)] crosslinked with 4, 4′-bis (methacryloylamino) azobenzene", Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, Vol. 191, No. 8, (1990), 1887-1897. https://doi.org/10.1002/macp.1990.021910814
    42. Yao, C. H., Liu, B. S., Chang, C. J., Hsu, S. H., Chen, Y. S., "Preparation of networks of gelatin and genipin as degradable biomaterials", Materials Chemistry and Physics, Vol. 83, No. 2-3, (2004), 204-208. https://doi.org/10.1016/j.mathchemphys.2003.08.027
    43. Touyama, R., Inoue, K., Takeda, Y.Yatsuzuka, M.Ikumoto, T.Moritome, N., "Studies on the blue pigments produced from genipin and methylamine. II. on the formation mechanisms of brownish-red intermediates leading to the blue pigment formation", Chemical and Pharmaceutical Bulletin, Vol. 42, No. 8, (1994), 1571-1578. https://doi.org/10.1248/cpb.42.1571
    44. Jin, J., Song, M., Hourston, D. J., "Novel chitosan-based films cross-linked by genipin with improved physical properties", Biomacromolecules, Vol. 5, No. 1, (2004), 162-168. https://doi.org/10.1021/bm034286m
    45. Zhu, K., Slusarewicz, P., Hedman, T., "Thermal analysis reveals differential effects of various crosslinkers on bovine annulus fibrosis", Journal of Orthopaedic Research, Vol. 29, No. 1, (2011), 8-13. https://doi.org/10.1002/jor.21189
    46. Imsombut, T., Srisuwan, Y., Srihanam, P., Baimark, Y., "Genipin-cross-linked silk fibroin microspheres prepared by the simple water-in-oil emulsion solvent diffusion method", Powder Technology, Vol. 203, No. 3, (2010), 603-608. https://doi.org/10.1016/j.powtec.2010.06.027
    47. Butler, M. F., Ng, Y., Pudney, P. D. A., "Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin", Journal of Polymer Science Part A: Polymer Chemistry, Vol. 41, No. 24, (2003), 3941-3953. https://doi.org/10.1002/pola.10960
    48. Solorio, L., Zwolinski, C., Lund, A. W., Farrell, M. J., Stegemann, J. P., "Gelatin microspheres crosslinked with genipin for local delivery of growth factors", Journal of Tissue Engineering and Regenerative Medicine, Vol. 4, No. 7, (2010), 514-523. https://doi.org/10.1002/term.267
    49. Sundararaghavan, H. G., Monteiro, G. A., Lapin, N. A., Chabal, Y. J., Miksan, J. R., Shreiber, D. I., "Genipin-induced changes in collagen gels: Correlation of mechanical properties to fluorescence", Journal of Biomedical Materials Research Part A, Vol. 87, No. 2, (2008), 308-320. https://doi.org/10.1002/jbm.a.31715
    50. Hussain, M. R., Maji, T. K., "Preparation of genipin cross-linked chitosan-gelatin microcapsules for encapsulation of zanthoxylum limonella oil (ZLO) using salting-out method", Journal of Microencapsulation, Vol. 25, No. 6, (2008), 414-420. https://doi.org/10.1080/02652040802025901
    51. Hatakeyama, T., Hatakeyama, H., Nakamura, K., "Non-freezing water content of mono-and divalent cation salts of polyelectrolyte-water systems studied by DSC", Thermochimica Acta, Vol. 253, (1995), 137-148. https://doi.org/10.1016/0040-6031(94)02087-5
    52. Martucci, J., Vázquez, A., Ruseckaite, R., "Nanocomposites based on gelatin and montmorillonite: Morphological and thermal studies", Journal of Thermal Analysis and Calorimetry, Vol. 89, No. 1, (2007), 117-122. https://doi.org/10.1007/s10973-006-7454-0
    53. Zhang, Z., Li, G., Shi, B. I., "Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes", Journal-Society of Leather Technologists and Chemists, Vol. 90, No. 1, (2006), 23-28. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.7337&rep=rep1&type=pdf
    54. Bigi, A., Boanini, E., Panzavolta, S., Roveri, N., "Biomimetic growth of hydroxyapatite on gelatin films doped with sodium polyacrylate", Biomacromolecules, Vol. 1, No. 4, (2000), 752-756. https://doi.org/10.1021/bm0055854
    55. Fernandez-Dıaz, M. D., Montero, P., Gómez-Guillén, M. C., "Effect of freezing fish skins on molecular and rheological properties of extracted gelatin", Food Hydrocolloids, Vol. 17, No. 3, (2003), 281-286. https://doi.org/10.1016/s0268-005x(02)00078-4
    56. Bigi, A., Borghi, M., Cojazzi, G., Fichera, A., Panzavolta, S., Roveri, N., "Structural and mechanical properties of crosslinked drawn gelatin films", Journal of Thermal Analysis and Calorimetry, Vol. 61, No. 2, (2000), 451-459. https://link.springer.com/article/10.1023/A:1010117401098
    57. Giusti, P., Barbani, N., Lazzeri, L., Polacco, G., Cristallini, C., Cascone, M. G., Gelatin-poly (vinyl alcohol) blends as bioartificial polymeric materials, Science and technology of polymers and advanced materials, Prasad, P. N., Mark, J. E., Kandil, S. H., Kafafi, Z. H. (eds), Springer, Boston, MA (1998), 449-462. https://doi.org/10.1007/978-1-4899-0112-5_39
    58. Torres-Giner, S., Gimeno-Alcaniz, J. V., Ocio, M. J., Lagaron, J. M., "Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods", ACS Applied Materials & Interfaces, Vol. 1, No. 1, (2008), 218-223. https://doi.org/10.1021/am800063x
    59. Bigi, A., Cojazzi, G., Panzavolta, S., Roveri, N., Rubini, K., "Stabilization of gelatin films by crosslinking with genipin", Biomaterials, Vol. 23, No. 24, (2002), 4827-4832. https://doi.org/10.1016/s0142-9612(02)00235-1
    60. Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., Roveri, N., "Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking", Biomaterials, Vol. 22, No. 8, (2001), 763-768. https://doi.org/10.1016/s0142-9612(00)00236-2
    61. Thakur, S., Govender, P. P., Mamo, M. A., Tamulevicius, S., Thakur, V. K., "Recent progress in gelatin hydrogel nanocomposites for water purification and beyond", Vacuum, Vol. 146, (2017), 396-408. https://doi.org/10.1016/j.vacuum.2017.05.032
    62. Kim, S. J., Yoon, S. G., Kim, S. I., "Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly (diallydimethylammonium chloride)", Journal of Applied Polymer Science, Vol. 91, No. 6, (2004), 3705-3709. https://doi.org/10.1002/app.13615
    63. Liu, Y., Zhang, C. J., Zhao, J. C., Guo, Y., Zhu, P., Wang, D. Y., "Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior", Carbohydrate Polymers, Vol. 139, (2016), 106-114. https://doi.org/10.1016/j.carbpol.2015.12.044
    64. Sarmento, B., Ferreira, D., Veiga, F., Ribeiro, A., "Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies", Carbohydrate Polymers, Vol. 66, No. 1, (2006), 1-7. https://doi.org/10.1016/j.carbpol.2006.02.008
    65. Anbinder, P. S., Deladino, L., Navarro, A. S., Amalvy, J. I., Martino, M. N., "Yerba mate extract encapsulation with alginate and chitosan systems: Interactions between active compound encapsulation polymers", Journal of Encapsulation and Adsorption Sciences, Vol. 1, No. 4, (2011), 80-87. https://doi.org/10.4236/jeas.2011.1401
    66. Soares, J., da, P., Santos, J. E., Chierice, G. O., Cavalheiro, E. T. G., "Thermal behavior of alginic acid and its sodium salt", Eclética Química, Vol. 29, No. 2, (2004), 57-64. https://doi.org/10.1590/s0100-46702004000200009
    67. Lee, H., Ahn, S. H., Kim, G. H., "Three-dimensional collagen/alginate hybrid scaffolds functionalized with a drug delivery system (DDS) for bone tissue regeneration", Chemistry of Materials, Vol. 24, No. 5, (2011), 881-891. https://doi.org/10.1021/cm200733s
    68. Vieira, E. F. S., Cestari, A. R., Airoldi, C., Loh, W., "Polysaccharide-based hydrogels: Preparation, characterization, and drug interaction behaviour", Biomacromolecules, Vol. 9, No. 4, (2008), 1195-1199. https://doi.org/10.1021/bm7011983
    69. Smitha, B., Sridhar, S., Khan, A. A., "Chitosan–sodium alginate polyion complexes as fuel cell membranes", European Polymer Journal, Vol. 41, No. 8, (2005), 1859-1866. https://doi.org/10.1016/j.eurpolymj.2005.02.018
    70. Kim, J. H., Jegal, J., Lee, K. H., "Optical resolution of α-amino acids through enantioselective polymeric membranes based on polysaccharides", Journal of Membrane Science, Vol. 213, No. 1-2, (2003), 273-283. https://doi.org/10.1016/s0376-7388(02)00534-3
    71. Hosseini Shirazi, F., Farhadi, E., Vakili Zahir, N., "Infrared spectrophotometry and its application in medicine", Research in Medicine, Vol. 29, No. 4, (2005), 379-386. http://pejouhesh.sbmu.ac.ir/article-1-89-en.pdf
    72. Benjakul, S., Oungbho, K., Visessanguan, W., Thiansilakul, Y., Roytrakul, S., "Characteristics of gelatin from the skins of bigeye snapper, priacanthus tayenus and priacanthus macracanthus", Food Chemistry, Vol. 116, No. 2, (2009), 445-451. https://doi.org/10.1016/j.foodchem.2009.02.063
    73. Uriarte-Montoya, M. H., Santacruz-Ortega, H., Cinco-Moroyoqui, F. J., Rouzaud-Sández, O., Plascencia-Jatomea, M., Ezquerra-Brauer, J. M., "Giant squid skin gelatin: Chemical composition and biophysical characterization", Food Research International, Vol. 44, No. 10, (2011), 3243-3249. https://doi.org/10.1016/j.foodres.2011.08.018
    74. Behnamghader, A., Chamansara, A., Surface characterization of biocompatible materials: Principles and methods, 1st Ed., Nokhbegan Sharif (MERC), Tehran, (2019).
    75. Yakimets, I., Wellner, N., Smith, A. C., Wilson, R. H., Farhat, I., Mitchell, J., "Mechanical properties with respect to water content of gelatin films in glassy state", Polymer, Vol. 46, No. 26, (2005), 12577-12585. https://doi.org/10.1016/j.polymer.2005.10.090
    76. Boskey, A., Camacho, N. P., "FT-IR imaging of native and tissue-engineered bone and cartilage", Biomaterials, Vol. 28, No. 15, (2007), 2465-2478. https://doi.org/10.1016/j.biomaterials.2006.11.043
    77. Kozlowska, J., Sionkowska, A., Skopinska-Wisniewska, J., Piechowicz, K., "Northern pike (esox lucius) collagen: Extraction, characterization and potential application", International Journal of Biological Macromolecules, Vol. 81, (2015), 220-227. https://doi.org/10.1016/j.ijbiomac.2015.08.002
    78. Muyonga, J. H., Cole, C. G. B., Duodu, K. G., "Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus)", Food Chemistry, Vol. 86, No. 3, (2004), 325-332. https://doi.org/10.1016/j.foodchem.2003.09.038
    79. Jackson, M., Watson, P. H., Halliday, W. C., Mantsch, H. H., "Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues", Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, Vol. 1270, No. 1, (1995), 1-6. https://doi.org/10.1016/0925-4439(94)00056-v
    80. D’Souza, L., Devi, P., Divya Shridhar, M. P., Naik, C. G., "Use of fourier transform infrared (FTIR) spectroscopy to study cadmium-induced changes in padina tetrastromatica (hauck)", Analytical Chemistry Insights, Vol. 3, (2008), 135-143. https://doi.org/10.4137/117739010800300001
    81. Sionkowska, A., Kaczmarek, B., Lewandowska, K., Grabska, S., Pokrywczyńska, M., Kloskowski, T., "3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid", International Journal of Biological Macromolecules, Vol. 89, (2016), 442-448. https://doi.org/10.1016/j.ijbiomac.2016.04.085
    82. Mi, F., Shyu, S., Peng, C., "Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin", Journal of Polymer Science Part A: Polymer Chemistry, Vol. 43, No. 10, (2005), 1985-2000. https://doi.org/10.1002/pola.20669
    83. Socrates, G., Infrared and Raman characteristic group frequencies:  Tables and charts., 3rd Ed., The University of West London, Middlesex, U.K., John Wiley and Sons:  Chichester, (2001). https://doi.org/10.1021/ja0153520
    84. Mallick, S. P., Sagiri, S. S., Singh, V. K., Behera, B., Thirugnanam, A., Pradhan, D. K., "Genipin-crosslinked gelatin-based emulgels: An insight into the thermal, mechanical, and electrical studies", AAPS PharmSciTech, Vol. 16, No. 6, (2015), 1254-1262. https://doi.org/10.1208/s12249-014-0260-2
    85. Wang, L., Wang, Y., Qu, J., Hu, Y., You, R., Li, M., "The cytocompatibility of genipin-crosslinked silk fibroin films", Journal of Biomaterials and Nanobiotechnology, Vol. 4, No. 3, (2013), 213-221. https://doi.org/10.4236/jbnb.2013.43026