نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

2 گروه مهندسی بافت و علوم سلولی کاربردی، دانشکده فناوری‌های نوین پزشکی، دانشگاه علوم پزشکی تهران، تهران، تهران، ایران

چکیده

هدف از این مطالعه، تهیه داربست­‌هایی بر پایه هیدروکسی اتیل سلولز/هیالورونیک اسید، با و بدون حضور ژلاتین و مقایسه آنها، برای ترمیم زخم­ های سوختگی درجه دو سطحی است. داربست‌ها، از محلول آبی پلیمرهای ذکر شده و به روش خشک کردن انجمادی، تهیه شدند. بررسی ریزساختاری با میکروسکوپ الکترونی روبشی، نشانگر میانگین اندازه حفرات 120 و 98 میکرومتر، به ‌ترتیب برای داربست­ های فاقد ژلاتین و دارای ژلاتین بود. بر اساس نتایج رئولوژی، در تمامی نمونه ­ها، همواره مقدار مدول اتلاف، بیشتر از مدول ذخیره بود و محلول­های تهیه­ شده، جریان ­پذیر بودند. تمامی نمونه­ ها، در بسامدهای کم، دارای رفتار رقیق برشی و در بسامدهای بالاتر از s-1 100، رفتار عکس، از خود نشان دادند. با افزودن ژلاتین، اندازه هر دو مدول اتلاف و ذخیره، افزایش یافت. آزمون جذب مایع و کاهش وزن نمونه­‌ها، توانایی زیاد داربست­‌ها را در میزان جذب تا بالای 3000 درصد، نشان داد. افزودن ژلاتین، موجب افزایش زمان فروپاشی شبکه، تا 2 ساعت و کاهش نرخ تخریب داربست ­ها شد. آزمون سمّیت سلولی، نشانگر زنده­ مانی بیش از 80 درصد سلول­های فیبروبلاست مجاور نمونه ­ها (در مقایسه با نمونه­ های کنترل) بود؛ ضمن اینکه حضور ژلاتین، بر فعالیت متابولیکی سلول­ها، تأثیر مثبت داشت و موجب افزایش سرعت تکثیر سلول­‌ها شد. نتایج آزمون خراش، توانایی داربست­‌ها را در افزایش سرعت مهاجرت سلولی، نسبت به نمونه کنترل، نشان داد. داربست هیدروکسی اتیل سلولز/هیالورونیک اسید/ژلاتین، به‌علت حضور ژلاتین و تأثیر آن در افزایش بیشتر سرعت مهاجرت سلول­ها که نشانگر شکل­ گیری سریع بافت پوششی اپی تلیوم بود، انقباض زخم را طی 24 ساعت، به 73 درصد رساند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fabrication and Evaluation of Physical and Biological Properties of Hydroxyethyl Cellulose/Hyaluronic Acid-Based Scaffolds Used for Second-Degree (Partial-Thickness) Burns Wounds Healing

نویسندگان [English]

  • Atefe Derakhshani 1
  • Saeed Hesaraki 1
  • Nader Nezafati 1
  • Mahmoud Azami 2

1 Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

2 Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran

چکیده [English]

The purpose of this study was to prepare and compare a hydroxyethyl cellulose/hyaluronic acid (HEC/HA)-based scaffold with and without gelatin for the treatment of second-degree partial-thickness burns. The scaffolds were prepared by freeze-drying method from the aqueous solutions of the mentioned polymers. Microstructural examination by scanning electron microscopy (SEM) indicated the average pore size of 120 and 98 µm for the gelatin-free and gelatin-containing scaffolds, respectively. According to the dynamic rheology measurements (DMA), all the solutions were flowable in which, the loss modulus was higher than the storage one. Moreover, the solutions revealed shear-thinning behaviour at low frequencies, which changed to shear thickening at frequencies higher than 100 s-1. Both loss and storage modulus increased by adding gelatin to the polymer solutions. The scaffolds water uptake was up to 3,000%. The addition of gelatin to the HA/HEC solution increased the polymer network collapse up to 2 hours and led to reducing the scaffolds degradation rate. Cytotoxicity assay in the presence of the scaffolds showed that more than 80 % of the fibroblast cells were viable (compared to the control group), meanwhile, the presence of  gelatin had a positive effect on the metabolic activity of the cells and increased the rate of cell proliferation.  Scratch test results showed the ability of scaffolds to increase the cell migration rate compared to the control sample. The hydroxyethyl cellulose/hyaluronic acid/gelatin scaffold due to the presence of gelatin and improved the cell migration, which indicating the rapid re-epithelialization, reduced wound contraction to   73 % within 24 hours.

کلیدواژه‌ها [English]

  • Hydroxyethyl Cellulose
  • Hyaluronic Acid
  • Gelatin
  • Burn Wound
  • Scaffold
  1. Kalaskar, D. K., Butler, P. E., Ghali, S., Textbook of Plastic and Reconstructive Surgery, Ucl Press, London, (2016). https://doi.org/10.14324/111.978191063394
  2. Upadhyay, N., Kumar, R., Mandotra, S. K., Meena, R. N., Siddiqui, M. S., Sawhney, R. C., Gupta, A., "Safety and healing efficacy of Sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats", Food and Chemical Toxicology, Vol. 47, No. 6, (2009), 1146-1153. https://doi.org/10.1016/j.fct.2009.02.002
  3. Altintas, M. A., Altintas, A. A., Knobloch, K., Guggenheim, M., Zweifel. C. J., Vogt, P. M., "Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy", Burns, Vol. 35, No. 1, (2009), 80-86. https://doi.org/10.1016/j.burns.2008.05.003
  4. Moore, F. A., Sauaia, A., Moore, E. E., Haenel, J. B., Burch, J. M., Lezotte, D. C., "Postinjury multiple organ failure: A bimodal phenomenon", Journal of Trauma and Acute Care Surgery, Vol. 40, No. 4, (1996), 501-512. https://journals.lww.com/jtrauma/Fulltext/1996/04000/Treatment_Results_of_Patients_with_Multiple.1.aspx
  5. Pan, S. C., "Burn blister fluids in the neovascularization stage of burn wound healing: a comparison between superficial and deep partial-thickness burn wounds", Burns & Trauma, Vol. 1, No. 1, (2013), 2321-3868.113332. https://doi.org/10.4103/2321-3868.113332
  6. Mondal, M. I. H., Cellulose-based Superabsorbent Hydrogels, Springer, Basel, (2019). https://doi.org/10.1007/978-3-319-76573-0
  7. Eaglstein, W. H., "Moist wound healing with occlusive dressings: A clinical focus", Dermatologic Surgery, Vol. 27, No. 2, (2001), 175-182. https://doi.org/10.1046/j.1524-4725.2001.00299.x
  8. Katz, M. H., Alvarez, A. F., Kirsner, R. S., Eaglstein, W. H., Falanga, V., "Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth", Journal of the American Academy of Dermatology, Vol. 25, No. 6, (1991), 1054-1058. https://doi.org/10.1016/0190-9622(91)70306-M
  9. Junker, J. P., Kamel, R. A., Caterson, E., Eriksson, E., "Clinical impact upon wound healing and inflammation in moist, wet, and dry environments", Advances in Wound Care, Vol. 2, No. 7, (2013), 348-356. https://doi.org/10.1089/wound.2012.0412
  10. Hoffman, A. S., "Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation", Advanced Drug Delivery Reviews, Vol. 65, No. 1, (2013), 10-16. https://doi.org/10.1016/j.addr.2012.11.004
  11. Peppas, N. A., Bures, P., Leobandung, W. S., Ichikawa, H., "Hydrogels in pharmaceutical formulations", European Journal of Ppharmaceutics and Biopharmaceutics, Vol. 50, No. 1, (2000), 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4
  12. Sinko, P. J., Stein, S., Menjoge, A. R., Gunaseelan, S., Priay Anumolu, S. N. S., Navath, R., Dressing Compositions and Methods, Rutgers State University of New Jersey, U.S. Patent, (2015). http://patents.google.com/patent/US9211358B2/en
  13. Li, J., Mooney, D. J., "Designing hydrogels for controlled drug delivery", Nature Reviews Materials, Vol. 1, No. 12, (2016), 1-17. https://doi.org/10.1038/natrevmats.2016.71
  14. Sachlos, E., Czernuszka, J. T., "Making tissue engineering scaffolds work, Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds", European Cells and Materials, Vol. 5, No. 29, (2003), 29-40. https://doi.org/10.22203/eCM.v005a03
  15. Ganji, F., Vasheghani Farahani, S., Vasheghani Farahani, E., "Theoretical description of hydrogel swelling: A review", Iranian Polymer Journal (English), Vol. 19, No. 5, (2010), 375-398. http://journal.ippi.ac.ir
  16. Omidian, H., Rocca, J. G., Park, K., "Advances in superporous hydrogels", Journal of Controlled Release, Vol. 102, No. 1, (2005), 3-12. https://doi.org/10.1016/j.jconrel.2004.09.028
  17. Manoukian, O. S., Matta, R., Letendre, J., Collins, P., Mazzocca, A. D., Kumbar, S. G., "Electrospun nanofiber scaffolds and their hydrogel composites for the engineering and regeneration of soft tissues", Biomedical Nanotechnology, Springer, New York, (2017), 261-278. https://doi.org/10.1007/978-1-4939-6840-4_18
  18. Kwon, S. S., Kong, B. J., Park, S. N., "Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose–hyaluronic acid and for applications as transdermal delivery systems for skin lesions", European Journal of Pharmaceutics and Biopharmaceutics, Vol. 92, (2015), 146-154. https://doi.org/10.1016/j.ejpb.2015.02.025
  19. Mogoşanu, G. D., Grumezescu, A. M., "Natural and synthetic polymers for wounds and burns dressing", International Journal of Pharmaceutics, Vol. 463, No. 2, (2014), 127-136. https://doi.org/10.1016/j.ijpharm.2013.12.015
  20. Wu, S., Deng, L., Hsia, H., Xu, K., He, Y., Huang, Q., Peng, Y., Zhou, Z., Peng, C.,"Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing", Journal of Biomaterials Applications, Vol. 31, No. 10, (2017), 1380-1390. https://doi.org/10.1177/0885328217702526
  21. Li, D., Xia, Y., "Electrospinning of nanofibers: reinventing the wheel?", Advanced Materials, Vol. 16, No. 14, (2004), 1151-1170. https://doi.org/10.1002/adma.200400719
  22. El Fawal, G. F., Abu-Serie, M. M., Hassan, M. A., Elnouby, M. S., "Hydroxyethyl cellulose hydrogel for wound dressing: Fabrication, characterization and in vitro evaluation", International Journal of Biological Macromolecules, Vol. 111, (2018), 649-659. https://doi.org/10.1016/j.ijbiomac.2018.01.040
  23. Eskandarinia, A.,Kefayat, A., Gharakhloo, M., Agheb, M., Khodabakhshi, D., Khorshidi, M., Sheikhmoradi, V., Rafienia, M., Salehi, H., "A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities", International Journal of Biological Macromolecules, Vol. 149, (2020), 467-476. https://doi.org/10.1016/j.ijbiomac.2020.01.255
  24. Lee, H. Y., Kim, H. E., Jeong, S. H., "One-pot synthesis of silane-modified hyaluronic acid hydrogels for effective antibacterial drug delivery via sol–gel stabilization", Colloids and Surfaces B: Biointerfaces, Vol. 174, (2019), 308-315. https://doi.org/10.1016/j.colsurfb.2018.11.034
  25. Shang, S. M., Li, Z., Xing, Y., Xin, J. H., Tao, X. M., "Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes", Applied Surface Science, Vol. 257, No. 5, (2010), 1495-1499. https://doi.org/10.1016/j.apsusc.2010.08.081
  26. Tonda-Turo, C., Gentile, P., Saracino, S., Chiono, V., Nandagiri, V. K., Muzio, G., Canuto, R. A., Ciardelli, G., "Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent", International Journal of Biological Macromolecules, Vol. 49, No. 4, (2011), 700-706. https://doi.org/10.1016/j.ijbiomac.2011.07.002
  27. Vueva, Y., Connell, L. S., Chayanun, S., Wang, D., McPhail, D. S., Romer, F., Hanna, J. V. Jones, J. R., "Silica/alginate hybrid biomaterials and assessment of their covalent coupling", Applied Materials Today, Vol. 11, (2018), 1-12. https://doi.org/10.1016/j.apmt.2017.12.011
  28. Wang, D., Romer, F., Connell, L. S., Walter, C., Saiz, E., Yue, S., Lee, P. D., McPhail, D. S., Hanna, J. V., Jones, J. R., "Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration", Journal of Materials Chemistry B, Vol. 3, No. 38, (2015), 7560-7576. https://doi.org/10.1039/C5TB00767D
  29. Bourges, X., Weiss, P., Coudreuse, A., Daculsi, G., Legeay, G., "General properties of silated hydroxyethylcellulose for potential biomedical applications", Biopolymers: Original Research on Biomolecules, Vol. 63, No. 4, (2002), 232-238. https://doi.org/10.1002/bip.10053
  30. Hasani, S., Nezafati, N., Hesaraki, S., "Investigating the effect of time and amount of cross linker on on hydroxyethyl cellulose based scaffolds, prepared by freeze drying method", Proceedings of 5th International Conference on Applied Research in Chemistry and Chemical Engineering Focusing on Local Technologies, Tehran, Iran, (2018).
  31. Fatimi, A., Tassin, J. F., Quillard, S., Axelos, M. A., Weiss, P., "The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices", Biomaterials, Vol. 29, No. 5, (2008), 533-543. https://doi.org/10.1016/j.biomaterials.2007.10.032
  32. Wang, T. W., Sun, J. S., Wu, H. C., Tsuang, Y. H., Wang, W. H., Lin, F. H., "The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice", Biomaterials, Vol. 27, No. 33, (2006), 5689-5697. https://doi.org/10.1016/j.biomaterials.2006.07.024
  33. Katoh, K., Tanabe, T., Yamauchi, K., "Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity", Biomaterials, Vol. 25, No. 18, (2004), 4255-4262. https://doi.org/10.1016/j.biomaterials.2003.11.018
  34. Morris, E. R., "Shear-thinning of ‘random coil’polysaccharides: Characterisation by two parameters from a simple linear plot", Carbohydrate Polymers, Vol. 13, No. 1, (1990), 85-96. https://doi.org/10.1016/0144-8617(90)90053-U
  35. Monfregola, L., Bugatti, V., Amodeo, P., De Luca, S., Vittoria, V., "Physical and water sorption properties of chemically modified pectin with an environmentally friendly process", Biomacromolecules, Vol. 12, No. 6, (2011), 2311-2318. https://doi.org/10.1021/bm200376c
  36. Saarai, A., Kasparkova, V., Sedlacek, T., Sáha, P., "On the development and characterisation of crosslinked sodium alginate/gelatine hydrogels", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 18, (2013), 152-166. https://doi.org/10.1016/j.jmbbm.2012.11.010
  37. Si, S., Zhou, R., Xing, Z., Xu, H., Cai, Y., Zhang, Q., "A study of hybrid organic/inorganic hydrogel films based on in situ-generated TiO2 nanoparticles and methacrylated gelatin", Fibers and Polymers, Vol. 14, No. 6, (2013), 982-989. https://doi.org/10.1007/s12221-013-0982-x
  38. Price, R. D., Myers, S., Leigh, I. M., Navsaria, H. A., "The role of hyaluronic acid in wound healing", American Journal of Clinical Dermatology, Vol. 6, No. 6, (2005), 393-402. https://doi.org/10.2165/00128071-200506060-00006
  39. Zhong, S., Zhang, Y., Lim, C., "Tissue scaffolds for skin wound healing and dermal reconstruction", Wiley Interdisciplinary Reviews: Nanomedicineand Nanobiotechnology, Vol. 2, No. 5, (2010), 510-525. https://doi.org/10.1002/wnan.100
  40. Ilina, O., Friedl, P., "Mechanisms of collective cell migration at a glance", Journal of Cell Science, Vol. 122, No. 18, (2009), 3203-3208. https://doi.org/10.1242/jcs.036525