نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 استادیار، مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر، تهران، تهران، ایران

2 دانشجوی دکتری، مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر، تهران، تهران، ایران

چکیده

در پژوهش حاضر، تأثیر افزودن نانوذرات دی‌بورید تیتانیم (TiB2) بر ریزساختار و خواص کششی کامپوزیت زمینه آلومینیوم 5083 مطالعه و بررسی شد. کامپوزیت‌هایAl5083-TiB2  (با 5 و 10 درصد وزنی تقویت‌کننده)، همراه با افزودنی‌های زیرکونیم (Zr) و اکسید سریم (CeO2)، با درصد‌های مختلف وزنی و به روش ریخته‌گری گردابی، در دمای 1000 درجه سلسیوس، تحت فرایند درجا تولید شدند. سپس نمونه‌ها، به‌منظور‌ توزیع یکنواخت تقویت‌کننده‌ها در زمینه، تحت فرایند اکستروژن گرم قرار گرفتند. نانوذرات TiB2 مورد استفاده در این پژوهش، با روش درجا، به‌وسیله پیش‌ماده‌های کریولیت (Na3AlF6)، اکسید تیتانیم (TiO2) و پتاسیم تترا‌فلورو بوراید (KBF4)، در مذاب آلومینیوم فراوری شد. به‌منظور‌ بررسی ریزساختار، سطوح و سازوکار شکست نمونه‌ها، از آنالیز پراش پرتو ایکس (XRD)، میکروسکوپ نوری (OM) و میکروسکوپ الکترونی روبشی (SEM) استفاده شد. نتایج آزمون کشش نشان داد که افزودن 10 درصد وزنی ذرات TiB2، در مقایسه با نمونه بدون تقویت‌کننده، باعث افزایش 7/17 درصدی استحکام کششی نهایی و کاهش 2/19 درصدی کرنش می‌شود. همچنین، افزودن Zr و CeO2، به‌علت حذف ترکیب بین‌فلزی Al3Ti و سازوکار عدم‌تطابق (ضرایب) انبساط حرارتی با زمینه، در مقایسه با نمونه بدون تقویت‌کننده، باعث افزایش 8/35 درصد استحکام و 78 درصد کرنش نمونه حاوی 10 درصد تقویت‌کننده شد. همچنین، آنیل‌کردن، بعد از مرحله اکستروژن، در نمونه حاوی 10 درصد وزنی TiB2، باعث کاهش استحکام کششی شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation on the Microstructure and Tensile Properties of Al5083-TiB2 Nanocomposites Produced by Stir Casting Method

نویسندگان [English]

  • Ali Alizadeh 1
  • Mehdi Abdollahi Azghan 2

1 Assistant Professor, University Complex of Materials and Manufacturing Technologies, Malek Ashtar University of Technology (MUT), Tehran, Tehran, Iran

2 Ph. D. Student, University Complex of Materials and Manufacturing Technologies, Malek Ashtar University of Technology (MUT), Tehran, Tehran, Iran

چکیده [English]

This study was conducted to investigate the effect of adding titanium diboride (TiB2) nanoparticles on the microstructure and tensile properties of the Al5083 matrix composite. Al5083/TiB2 metal matrix composites (with 5 and 10 wt % reinforcement) along with zirconium (Zr) and cerium oxide (CeO2) additives with different wt % were fabricated by in situ-stir casting at 1000 °C. The samples were then subjected to hot extrusion for uniform distribution of reinforcements in the matrix. TiB2 nanoparticles were in-situ processed in molten aluminum using the precursors such as cryolite (Na3AlF6), titanium oxide (TiO2), and potassium tetrafluoroborate (KBF4). The microstructure, surfaces, and failure mechanism of the samples were investigated using X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy (SEM). Tensile test results showed that the addition of 10 wt % TiB2 particles increased the ultimate tensile strength by 17.7 % and decreased the strain by 19.2 % compared to the sample without reinforcement. Besides, the addition of Zr and CeO2 increased the strength by 35.8 % and the strain of the sample containing 78 % by 10 % reinforcement compared to the sample without reinforcement due to the removal of intermetallic compound Al3Ti and the incompatibility between coefficients of thermal expansion (CTE) with the matrix. Also, post-extrusion annealing in the sample with 10 wt % TiB2 reduced the tensile strength.

کلیدواژه‌ها [English]

  • Al5083 Alloy
  • Titanium Diboride
  • Stir Casting
  • Hot Extrusion
  1. Zarghami, F., Farashiani, A., Razavi, M., "The effect of V2O5 addition on the microstructure and mechanical properties of Al-V2O5 composites prepared by spark plasma sintering", Journal of Advanced Materials and Technologies (JAMT), 7, No. 3, (2018), 43-54. https://www.jamt.ir/article_91773.html?lang=en
  2. Abdollahi Azghan, M., Eslami-Farsani, R., "Experimental investigation of effect of thermal cycling and metal surface treatment on flexural properties laminate composite of aluminium-epoxy/basalt fibers", Modares Mechanical Engineering, 17, No. 8, (2017), 369-376. http://mme.modares.ac.ir/article-15-12103-en.html
  3. Xin-Min, M., Rui-Juan, X., Hao, W., Wei-Min, W., "Electronic structure and chemical bond of titanium diboride", Journal of Wuhan University of Technology-Materials Science Edition, 18, No. 2, (2003), 11-14. https://doi.org/10.1007/BF02838790
  4. Hashim, J., Looney, L., Hashmi, M., "Metal matrix composites: Production by the stir casting method", Journal of Materials Processing Technology, 92-93, (1999), 1-7. https://doi.org/10.1016/S0924-0136(99)00118-1
  5. Reddy, M. P., Shakoor, R. A., Parande, G., Manakari V., Ubaid, F., Mohamed, A., Gupta, M., "Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques", Progress in Natural Science: Materials International, 27, No. 5, (2017), 606-614. https://doi.org/10.1016/j.pnsc.2017.08.015
  6. Xue, J., Wang, J., Han, Y., Li, P., Sun, B., "Effects of CeO2 additive on the microstructure and mechanical properties of in situ TiB2/Al composite", Journal of Alloys and Compounds, Vol. 509, No. 5, (2011), 1573-1578. https://doi.org/10.1016/j.jallcom.2010.10.152
  7. Li, H., Wang, X., Chai, L., Wang, H., Chen, Z., Xiang, Z., Jin, T., "Microstructure and mechanical properties of an in-situ TiB2/Al-Zn-Mg-Cu-Zr composite fabricated by Melt-SHS process”, Materials Science and Engineering: A, Vol. 720, (2018), 60-68. https://doi.org/10.1016/j.msea.2018.02.025
  8. Wang, Y., Fang, C., Zhou, , Hashimoto, T., Zhou, X., Ramasse, Q., Fan, Z., "Mechanism for Zr poisoning of Al-Ti-B based grain refiners", Acta Materialia, Vol. 164, (2019), 428-439. https://doi.org/10.1016/j.actamat.2018.10.056
  9. Hosseini, S. A., Ranjbar, K., Dehmolaei, R., Amirani, A. R., "Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing", Journal of Alloys and Compounds, 622, (2014), 725-733. https://doi.org/10.1016/j.jallcom.2014.10.158
  10. Tsuo, Y., Yoshida, K., Atsuta, M., "Effects of alumina-blasting and adhesive primers on bonding between resin luting agent and zirconia ceramics", Dental Materials Journal, 25, No. 4, (2006), 669-674. https://doi.org/10.4012/dmj.25.669
  11. Hashim, J., Looney, L., Hashmi, M. S. J., "The wettability of SiC particles by molten aluminium alloy", Journal of Materials Processing Technology, 119, No.1-3, (2001), 324-328. https://doi.org/10.1016/S0924-0136(01)00975-X
  12. Akhlaghi, A., Noghani, M., Emamy, M., "The effect of La-intermetallic compounds on tensile properties of Al-15 % Mg2Si in-situ composite", Procedia Materials Science, 11, (2015), 55-60. https://doi.org/10.1016/j.mspro.2015.11.085
  13. Alemi Ardakani, E., Kalantar, M., Mosallaee Pour, M., Ghasemi Banad Kouki, S., "Production and characterization of in-situ Al-Mn-Al2O3 composite produced in Al-MnO2 system", Journal of Science and Technology of Composites, 3, No.3, (2016), 277-284. http://jstc.iust.ac.ir/article_21374.html
  14. Alipour, M., Eslami-Farsani, R., "Investigation of the microstructure and hardness of cast AA7068 nanocomposite reinforced with SiC nanoparticles", Journal of Science and Technology of Composites, 5, No. 4, (2019), 461-468. http://jstc.iust.ac.ir/article_30795_en.html
  15. Hedayatian, M., Vahedi, K., Nezamabadi, A., Momeni, A., "Effect of graphene oxide reinforcement on the ballistic properties of Al6061- nanocomposites", Journal of Science and Technology of Composites, 6, No. 3, (2019), 401-410. http://jstc.iust.ac.ir/article_36092_en.html
  16. Feng, C. F., Froyen, L., "Microstructures of in situ Al/TiB2 MMCs prepared by a casting route", Journal of Materials Science, 35, No. 4, (2000), 837-850. https://doi.org/10.1023/A:1004729920354
  17. Wang, M., Chen, D., Chen, Z., Wu, Y., Wang, F., Ma, N., Wang, H., "Mechanical properties of in-situ TiB2/A356 composites", Materials Science and Engineering: A, 590, (2013), 246-254. https://doi.org/10.1016/j.msea.2013.10.021
  18. Bathula, S., Anandani, R. C., Dhar, A., Srivastava, A., "Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering", Materials Science and Engineering: A, 545, (2012), 97-102. https://doi.org/10.1016/j.msea.2012.02.095
  19. Chen, Z., Wang, T., Zheng, Y., Zhao, Y., Kang, H., Gao, L., "Development of TiB2 reinforced aluminum foundry alloy based in situ composites–Part I: An improved halide salt route to fabricate Al–5 wt % TiB2 master composite", Materials Science and Engineering: A, 605, (2014), 301-309. https://doi.org/10.1016/j.msea.2014.02.088
  20. Suresh, S., Shenbag, N., Moorthi, V., "Aluminium-titanium diboride (Al-TiB2) metal matrix composites: challenges and opportunities", Procedia Engineering, 38, (2012), 89-97. https://doi.org/10.1016/j.proeng.2012.06.013
  21. ASTM E8/E8M-15a, "Standard test methods for tension testing of metallic materials", Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, (2015). https://doi.org/10.1520/E0008_E0008M-15A
  22. Ehsani, N., Abdi, F., Abdizadeh, H., Baharvandi, H. R., "The effect of TiB2 powder on microstructure and mechanical behavior of Al-TiB2 metal matrix composites", Proceedings of SPIE 6423, International Conference on Smart Materials and Nanotechnology in Engineering, Vol. 6423, (2008), 642369. https://doi.org/10.1117/12.791738
  23. Tee, K. L., Lu, L., Lai, M. O., "In situ stir cast Al–TiB2 composite: processing and mechanical properties", Materials Science and Technology, 17, No. 2, (2001), 201-206. https://doi.org/10.1179/026708301101509863
  24. Tahreen, , Zhang, D. F., Pan, F. S., Jiang, X. Q., Li, D. Y., Chen, D. L., "Hot deformation and work hardening behavior of an extruded Mg–Zn–Mn–Y alloy", Journal of Materials Science & Technology, Vol. 31, No. 12, (2015), 1161-1170. https://doi.org/10.1016/j.jmst.2015.10.001
  25. Crimp, M. A., Vedula, K., "The relationship between cooling rate, grain size and the mechanical behavior of B2Fe-Al alloys", Materials Science and Engineering: A, Vol. 165, No. 1, (1993), 29-34. https://doi.org/10.1016/0921-5093(93)90623-M