نوع مقاله : مقاله کامل پژوهشی

نویسنده

استادیار، پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، مجتمع پژوهشی شمال‌غرب کشور، بناب، آذربایجان شرقی، ایران

چکیده

دی‌اکسید تلوریم (TeO2)، یکی از نیمه‌رساناهای مهم است که دارای خاصیت صوتی-اپتیکی بالا و پایداری شیمیایی و مکانیکی خوبی بوده و در دو فاز بی‌شکل و بلوری، برای مطالعات پایه و انواع کاربردها در فناوری، از جمله استفاده در قطعات اپتیکی، آشکارسازهای تابش گاما و حسگرهای گازی مناسب است. در این پژوهش، پس از تهیه لایه‌های نازک TeO2، به روش لایه‌نشانی تبخیر حرارتی در خلأ، در سه ضخامت مختلف، تأثیر تابش پرتو گاما در محدوده‌ Gy 10-40 و بازپخت حرارتی بر خواص نمونه‌ها، مطالعه و بررسی شد. نتایج میکروسکپی الکترونی روبشی (SEM)، تشکیل لایه‌ای با سطح یکنواخت را نشان داد. تحلیل نتایج پراش پرتو ایکس (XRD) نشان داد که ساختار لایه نازک TeO2، قبل از بازپخت، به‌صورت بی‌شکل است، ولی بعد از بازپخت، در دمای 400 درجه سلسیوس، به‌صورت بلوری است. شدت جذب نوری، بعد از بازپخت و بعد از تابش گاما، افزایش، ولی شکاف انرژی کاهش یافت. جریان الکتریکی نمونه‌ها، با افزایش ضخامت لایه‌ها، دُز پرتو گاما و بعد از بازپخت، افزایش یافت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparison of Optical and Electrical Properties of TeO2 Nanostructure Thin Films Before and After Gamma Radiation

نویسنده [English]

  • Tavakkol Tohidi

Assistant Professor, Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Northwest Research Complex, Bonab, East Azerbaijan, Iran

چکیده [English]

Tellurium dioxide (TeO2) is an important semiconductor, which it has high acousto-optic figure of merit, chemical stability and mechanical durability and both in its crystalline and amorphous forms, making it suitable for theoretical studies and technological applications such as optical devices, γ-ray detectors, and gas sensors. In this work, the TeO2 thin film with three different thicknesses was prepared by vacuum thermal evaporation method. The effect of gamma irradiation in the range of 10-40 Gy and also the effect of thermal annealing on properties of TeO2 thin films were investigated. Scanning Electron Microscopy (SEM) results showed the formation of the film with smooth surface. X-Ray Diffraction (XRD) analysis were revealed that the as-deposited films were amorphous but after annealing at 400 °C, the crystalline phase of the samples occurred. The optical absorbance after annealing and gamma radiation was increased but the band gap  decreased. The electrical current of samples was increased with increasing of films thickness, gamma dose and also after annealing.
 

کلیدواژه‌ها [English]

  • TeO2
  • Thin Film
  • Gamma Irradiation
  • Optical Properties
  • Electrical Properties
  1. Rashidi, M., Tamizifar, M., Boutorabi, S. M. A., "Characterization of nanostructure coatings of Ti-Al-C-N system deposited using plasma assisted chemical vapor deposition", Journal of Advanced Matrrials and Technologies, Vol. 9, No. 1, (2020), 19-31. (In Farsi). https://doi.org/30501/jamt.2020.106192
  2. Nourmohammadi, A., "Synthesis of lead zirconate titanate nanostructured thin films using polyols", Journal of Advanced Matrrials and Technologies, Vol. 8, No. 2, (2019), 69-76. (In Farsi). https://doi.org/30501/jamt.2019.94187
  3. Arshak, K., Korostynska, O., Advanced Materials and Techniques for Radiation Dosimetry, Artech House, London, (2006). https://uk.artechhouse.com/Advanced-Materials-and-Techniques-for-Radiation-Dosimetry-P910.aspx
  4. Arshak, K., Korostynska, O., "Thin- and thick-film real-time gamma radiation detectors", IEEE Sensors Journal, Vol. 5, No. 4, (2005), 574-580. https://doi.org/1109/JSEN.2005.850992
  5. Arshak, K., Korostynska, O., "Response of metal oxide thin film structures to radiation", Materials Science and Engineering B, Vol. 133, No. 1-3, (2006), 1-7. https://doi.org/10.1016/j.mseb.2006.06.012
  6. Phillips, G. W., Readshaw, K., Brown, G. O., Weiss, R. G., Guardala, N. A., Price, J. L., Mueller, S. C., Moscovitch, M., "Observation of radiation effects on three-dimensional optical random-access-memory materials for use in radiation dosimetry", Applied Radiation and Isotopes, Vol. 50, No. 5 (1999), 875-881. https://doi.org/10.1016/S0969-8043(98)00139-0
  7. Shpotyuk, O. I., "Amorphous chalcogenide semiconductors for dosimetry of high-energy ionizing radiation", Radiation Physics and Chemistry, Vol. 46, No. 4-6, (1995), 1279-1282. https://doi.org/10.1016/0969-806X(95)00369-9
  8. Uchida, N., Ohmachi, Y., "Elastic and photoelastic properties of TeO2 single crystal", Jounal of Applied Physics, Vol. 40, No. 12, (1969), 4692-4695. https://doi.org/10.1063/1.1657275
  9. Siciliano, T., Di Giulio, M., Tepore, M., Filippo, E., Micocci, G., Tepore, A., "Ammonia sensitivity of rf sputtered tellurium oxide thin film", Sensors and Actuators B, Vol. 138, No. 2, (2009), 550-555. https://doi.org/10.1016/j.snb.2009.02.068
  10. Siciliano, T., Di Giulio, M., Tepore, , Filippo, E., Micocci, G., Tepore, A., "Effect of thermal annealing time on optical and structural properties of TeO2 thin films", Vacuum, Vol. 84, No. 7, (2010), 935-939. https://doi.org/10.1016/j.vacuum.2009.12.017
  11. Mivolil, D. S., Chee, P., Rasmidi, R., Alias, A., Salleh, S., Mohd Salleh, K. A., Jalal Bayar, A. M., "Gamma ray and neutron radiation effects on the electrical and structural properties of n-ZnO/p-CuGaO2 Schottky diode", ECS Journal of Solid State Science and Technology, Vol. 9, No. 4, (2020), 045019. https://doi.org/10.1149/2162-8777/ab8f19
  12. Akay, D., Karadeniz, , Birkan Selçuk, A., Bilge Ocak, S., "Effect of gamma-ray irradiation on the electrical characteristics of Al/C24H12/p-Si nano-structure", Physica Scripta, Vol. 93, (2018), 095301. https://doi.org/10.1088/1402-4896/aad2a7
  13. Sharma, S. L. and Maity, T. K., "Effect of gamma radiation on electrical and optical properties of (TeO2)9 (InO3)0.1 thin films", Bulletin of Materials Science, Vol. 34, No. 1, (2011), 61-69. https://www.ias.ac.in/describe/article/boms/034/01/0061-0069
  14. Abhirami, K. M., Sathyamoorthy, R., Asokan, K., "Structural, optical and electrical properties of gamma irradiated SnO thin films", Radiation Physics and Chemistry, Vol. 91, (2013), 35-39. https://doi.org/10.1016/j.radphyschem.2013.05.030
  15. Mucka, V., Podlaha, J., Silber, R., "NiO–ThO2 mixed catalysts in hydrogen peroxide decomposition and influence of ionizing radiation", Radiation Physics and Chemistry, Vol. 59, No. 5-6 (2000), 467-475. https://doi.org/10.1016/S0969-806X(00)00307-8
  16. Arshak, K., Korostynska, O., Fahim, F., "Various structures based on nickel oxide thick films as gamma radiation sensors", Sensors, Vol. 3, No. 6, (2003), 176-186. https://doi.org/10.3390/s30600176
  17. Arshak, K., Korostynska, O., "Gamma radiation dosimetry using tellurium dioxide thin film structures", Sensors, Vol. 2, No. 8, (2002), 347-355. https://doi.org/1109/ICSENS.2002.1037155
  18. Arshak, K., Korostynska, O., Molloy, J., Harris, J., "Optical radiation sensing properties of MnO/TeO2 thin films", IEEE Sensors Journal, Vol. 6, No. 3, (2006), 656-660. https://doi.org/1109/JSEN.2006.874016
  19. Almatari, M., "Gamma radiation shielding properties of glasses within the TeO2-TiO2-ZnO system", Radiochimica Acta, Vol. 107, No. 6, (2019) 517-522. https://doi.org/10.1515/ract-2018-3058
  20. Sayyed, I., Qashou, S. I., Khattari, Z. Y., "Radiation shielding competence of newly developed TeO2-WO3 glasses", Journal of Alloys and Compounds, Vol. 696, (2017), 632-638. https://doi.org/10.1016/j.jallcom.2016.11.160
  21. Maity, T. K., Sharma, S. L., Chourasiy, G., "The real-time gamma radiation dosimetry with TeO2 thin films", Radiation Measurements, Vol. 47, No. 2, (2012), 145-148. https://doi.org/10.1016/j.radmeas.2011.11.008
  22. Arshak, K., Korostynska, O., "Effect of gamma radiation onto the properties of TeO2 thin films", Microelectronics International, 19, No. 3, (2002), 30-34. https://doi.org/10.1108/13565360210445023
  23. Arshak, K., Korostynska, O., "Gamma radiation-induced changes in the electrical and optical properties of tellurium dioxide thin films", IEEE Sensors, 3, No. 6, (2003), 717-721. https://doi.org/10.1109/JSEN.2003.820327
  24. Sudha, A., Maity, T. K., Sharma, S. L., Gupta, A. N., "Gamma irradiation effect on the optical properties of tellurium dioxide films", Nuclear Instruments and Methods in Physics Research B, Vol. 461, (2019), 171–174. https://doi.org/10.1016/j.nimb.2019.09.050
  25. Kumar, S., Mansingh, A., "Fabrication and characterization of tetragonal and orthorhombic TeO2 films", Proceedings of IEEE 7th international symposium on Applications of ferroelectrics, USA, (6-8 June, 1990), 717-719. https://doi.org/10.1109/ISAF.1990.200356
  26. Mott, N. F., Davis, E. A., Electronic Processes in Non-Crystalline Materials, 2nd, Oxford University Press, New York, (1979). https://global.oup.com/academic/product/electronic-processes-in-non-crystalline-materials 9780199645336?cc=ro&lang=en&#
  27. Tauc, J., Amorphous and liquid semiconductors, Plenum, London and New York, (1974). http://dx.doi.org/10.1007/978-1-4615-8705-7
  28. Tohidi, T., "Investigation of gamma irradiation effect on optical properties of TeO2 films", Proceeding of Annual Physics Conference of Iran, Tabriz University, (2019), 441-417. (In Farsi). https://www.psi.ir/farsi.asp?page=physics98
  29. Dewan, N., Sreenivas, K., Gupta, V., "Comparative study on TeO2 and TeO3 thin films for γ-ray sensor application", Sensors and Actuators A: Physical, Vol. 147, No. 1, (2008), 115-120. https://doi.org/10.1016/j.sna.2008.04.011
  30. Zhu, R. Y., "Radiation damage in scintillating crystals", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 413, No. 2–3, (1998), 297-311. https://doi.org/10.1016/S0168-9002(98)00498-7