نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک، مرکزی، ایران

چکیده

هدف از این پژوهش، یافتن روش پوشش ­دهی نوین، جهت کاهش هزینه ­های اقتصادی، برآوردن نیاز صنایع دریایی به پروانه­ های کشتی با استحکام بالا و افزایش طول عمر این قطعات در هنگام کار در محیط آب دریا است. بدین ­منظور، پودر کانی حاوی ترکیبی از آهن و تیتانیوم (TM) آسیاکاری ­شده، به روش پاشش حرارتی سوخت اکسیژن با سرعت بالا (HVOF)، روی سطح زیرلایه آلیاژ نایبرال، پوشش داده شد. برای ارزیابی خواص پوشش، از آنالیزهای پراش پرتو ایکس (XRD)، میکروسکوپ نوری (OM)، میکروسکوپ الکترونی روبشی (SEM)، ریزسختی ­سنجی و زبری ­سنجی، استفاده شد. همچنین، ارزیابی رفتار تریبولوژی زیرلایه و پوشش، با استفاده از آزمون سایش پین روی دیسک، تحت بار 10 نیوتن و مسافت 1000 متر، در دمای محیط، انجام گرفت. نتایج حاصل از مشخصه ­یابی پودر، نشان ­دهنده توزیع مناسب اندازه ذرات و وجود فازهای حاوی عناصر آهن و تیتانیوم در پودر است. بر این اساس، بلورینگی و پایداری فازی پودر در پوشش، با حضور فازهای CuFe2O4، Fe3O4 و Fe2.6O4Ti0.52 تقویت شد. نتایج، نشان داد که سرعت بالای پرتاب ذرات به ­هنگام پاشش و متراکم ­بودن ساختار پوشش، باعث افزایش چسبندگی پوشش به زیرلایه، کاهش تخلخل و افزایش سختی پوشش می­ شود. این پوشش، با نرخ سایش کمتر نسبت به زیرلایه، موجب افزایش مقاومت به سایش چشمگیری در نمونه شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Microstructure and Wear Behavior of Iron-Titanium Composition Coating Applied by HVOF Process

نویسندگان [English]

  • Amireh Jalali
  • Mehdi Raoufi
  • Fardin Nematzadeh

Department of Materials Engineering, Faculty of Engineering, University of Arak, Arak, Markazi, Iran

چکیده [English]

The purpose of this investigation is to find a new coating method to reduce economic costs, meet the needs of the marine industry to high-strength ship propellers and increase the lifetime of these pieces during the operation in seawater. For this purpose, milled TM mineral powder (containing a combination of iron and titanium) was coated on the surface of a Nibral alloy substrate by high-speed oxygen fuel (HVOF) thermal spraying process. The coating properties were evaluated using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), microhardness, and roughness analysis. Also, the tribological behaviour of the substrate and the coating was evaluated using the pin on disk wear test under a 10 N load and a distance of 1000 m at ambient temperature. The results of powder characterization indicate the suitable particle size distribution and the presence of phases containing iron and titanium elements in the powder. Accordingly, the crystallinity and phase stability of the powder in the coating were enhanced by the presence of CuFe2O4, Fe3O4, and Fe2.6O4Ti0.52 phases. The results showed that the high velocity of throwing particles during spraying and the density of the coating structure caused the increase of the coating adhesion to the substrate, the decrease of porosity and the increase of hardness of the coating. This coating, with a lower wear rate than the substrate, significantly increased the wear resistance of the specimen.

کلیدواژه‌ها [English]

  • Nibral Alloy
  • HVOF Thermal Spray
  • TM Mineral Powder

1.   Mahbub, H., "High velocity oxy-fuel (HVOF) thermal spray deposition of functionally graded coatings", Ph. D. Thesis, Dublin City University, (2005). http://doras.dcu.ie/17346/ (Accessed: 30 Aug 2012).

2.   Zhao, L., Lugscheider, E., "Influence of the spraying processes on the properties of 316L stainless steel coatings", Surface and Coatings Technology, Vol. 162, No. 1, (2002), 6-10. https://doi.org/10.1016/S0257-8972(02)00560-1

3.   Scrivani, A., Lanelli, S., Rossi A., Groppetti, R., Casadei, F., Rizzi, G., "A contribution to the surface analysis and characterisation of HVOF coatings for petrochemical application", Wear, Vol. 250, No. 1-12, (2001), 107-113. https://doi.org/10.1016/S0043-1648(01)00621-4

4.   Sobolev, V. V., Guilemany, J. M., Nutting, J., High velocity oxy fuel spraying: Theory, structure-property relationships and applications, Edited by Joshi, Sh., Institute of Materials, Minerals and Mining, CRC Press, (2004). https://www.amazon.com /dp/1902653726

5.   Tuthill A. H., Guidelines for the use of copper alloys in seawater, (1987). https://www.copper.org

6.   Wharton J. A., Barik, R. C., Kear, G., Wood, R. J. K., Stokes, K. R., Walsh, F. C., "The corrosion of nickel-aluminium bronze in seawater", Corrosion Science, Vol. 47, No. 12, (2005), 3336-3367. https://doi.org/10.1016/j.corsci.2005.05.053

7.   Raghavan V., "Al-Cu-Fe (aluminum-copper-iron)", Journal of Phase Equilibria and Diffusion, Vol. 26, (2005), 59-64. https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs11669-010-9743-3

8.   Kucita P., "The development of a wear resistance aluminum bronze (Cu-Al-Fe) coating", Ph. D. Thesis, Southampton University, (2016). http://eprints.soton.ac.uk/id/eprint/403720

9.   J-Barr, C., "Severe plastic deformation of nickel aluminium bronze alloys for marine applications", Ph. D. Thesis, Department of Mechanical Engineering, Melbourne City University, (2015). http://hdl.handle.net/11343/54883

10. Holmberg, K., Erdemir, A., "Influence of tribology on global energy consumption, costs and emissions", Friction, Vol. 5, No. 3, (2017), 263-284. https://doi.org/10.1007/S40544-017-0183-5

11. Tang, C. H., Cheng, F. T., Man, H. C., "Laser surface alloying of a marine propeller bronze using aluminium powder: Part I: Microstructural analysis and cavitation erosion study", Surface & Coatings Technology, Vol. 200, No. 8, (2006), 2602-2609. https://doi.org/10.1016/j.surfcoat.2004.12.021

12. Tang, C. H., Cheng, F. T., Man, H. C., "Laser surface alloying of a marine propeller bronze using aluminium powder: Part II: Corrosion and erosion-corrosion synergism", Surface & Coatings Technology, Vol. 200, No. 8, (2006), 2594-2601. https://doi.org/10.1016/j.surfcoat.2004.12.022

13. Park, K. S., Kim, S., "Corrosion and corrosion fatigue characteristics of cast NAB coated with NAB by HVOF thermal spray", Journal of The Electrochemical Society, Vol. 158, No. 10, (2011), 335-340. https://doi.org/10.1149/1.3622343

14. Poorman, C. A., The use of thermal spraying to enhance the bonding characteristics of a urethane coated propeller: Trident scholar project report, Edited by PN, United States Naval Academy, Maryland, (1999). https://www.amazon.com/-/es/Corey-Poorman/dp/B00IT6GRY0

15. Lv, Y., Wang, L., Xu, X., Lu, W., "Effect of post heat treatment on the microstructure and microhardness of friction stir processed NiAl bronze (NAB) alloy", Metals, Vol. 5, No. 3, (2015), 1695-1703. https://doi.org/10.3390/met5031695

16. Fuller, M. D., "Friction stir processing and fusion welding in nickel aluminum propeller bronze, department of mechanical and astronautical engineering", Thesis Collection, Naval Postgraduate School, California, (2006). http://hdl.handle.net/10945/2687

17. Cottam, R., Barry, T., "Laser processing of nickel–aluminum bronze for improved surface corrosion properties", Journal of Laser Applications, Vol. 25, (2013). https://doi.org/10.2351/1.4799555

18. ASTM B 505/B 505M, Standard specification for copper alloy continuous castings, (2018). https://www.astm.org/COMMIT/SUBCOMMIT/B0505.html

19. ASTM B148-97, An ASTM designation number identifies a unique version of an ASTM standard, B148-97(2009), B=nonferrous metals; 148 = assigned sequential number, 97 = year of original adoption (or, in the case of revision, the year of last revision), (2009) = year of last reapproval, Standard specification for aluminum-bronze sand castings, (2009). https://www.astm.org/COMMIT/SUBCOMMIT/B0505.htm

20. Pawlowski L., Science and engineering of thermal spray coatings, Second Edition, John Wiley & Sons, (2008). https://www.researchgate.net/publication/233857052_The_Science_and_Engineering_of_Thermal_Spray_Coatings

21. Sidhu, H. S., Sidhu, B. S., Prakash, S., "Solid particle erosion of HVOF sprayed NiCr and Stellited coating", Surface and Coatings Technology, Vol. 202, No. 2, (2007), 232-238. https://doi.org/10.1016/j.surfcoat.2007.05.035

22. Tan, J. Ch., "Optimization of the HVOF thermal spray process for coating, forming and repair of components, mechanical & manufacturing engineering", Ph. D. Thesis, Dublin City University, (1997). http://doras.dcu.ie/19435/ (Accessed: 2 Oct 2013).

23. Davis, J. R., Surface engineering for corrosion and wear resistance, ASM International, CRC Press, (2001). http://doras.dcu.ie/19435/

24. Amin, S., Panchal, H., "A review on thermal spray coating processes", International Journal of Current Trends in Engineering & Research (IJCTER), Vol. 2, No. 4, (2016), 556-563. http://poudrafshan.com/wp-content/uploads/2019/05/A-Review-on-Thermal-Spray-Coating-Processes-1.pdf