نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه مهندسی مواد، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، فارس، ایران

چکیده

در این پژوهش، خواص قطعات تولید شده از نانوکامپوزیت Al2O3-B4C، مورد بررسی قرار گرفت. پودر نانوکامپوزیت Al2O3-B4C، از پودرهای آلومینیوم، اکسید بور و کربن، از طریق آلیاژسازی مکانیکی و سپس، سنتز خوداحتراقی دما-بالا، سنتز شد. برای تولید قطعات، پودر نانوکامپوزیت تولیدی، به روش پرس گرم، در دماهای 1400، 1500 و 1600 درجه سلسیوس، تف­ جوشی شد. مشخصه‌یابی نمونه‌های پودری و قطعات تولید شده، با استفاده از پراش ­سنجی پرتو ایکس و میکروسکوپ الکترونی روبشی، انجام شد. نتایج پراش‌سنجی پرتو ایکس، نشان داد که حین فرایند مکانیکی-شیمیایی، هیچ­گونه تغییر فازی، رخ نمی‌دهد، بلکه کاهش اندازه ذرات پودرها و اختلاط مناسب آنها، سبب ترغیب فرایند سنتز خوداحتراقی و ایجاد محصول می‌شود. بهترین نتایج، برای قطعه تف­ جوشی شده در دمای °C 1500، با سختی GPa 6/19، چگالی نسبی 99/4 % و چقرمگی شکست MPa.m1/2 6/7 بدست آمد. همچنین، با افزایش دمای تف‌جوشی به C ° 1600 و افزایش چگالی، سختی قطعه، به دلیل رشد دانه‌ها، کاهش می‌یابد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fabrication of Al2O3-B4C Nanocomposite via Ball Milling, Subsequent Self-Propagation High-Temperature Synthesis, and Final Hot Pressing

نویسندگان [English]

  • Maryam Vaeedi
  • Amin Rabiezadeh

Department of Materials Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Fars, Iran

چکیده [English]

In this study, the properties of Al2O3-B4C synthesized nanocomposite components were investigated. The Al2O3-B4C nanocomposite powder was synthesized from aluminum, boron oxide, and graphite powders via mechanical alloying route, followed by self-propagation high-temperature synthesis (SHS). In order to produce bulk parts, the nanocomposite powder was sintered by hot pressing at 1400, 1500, and 1600 °C. Characterization of powder samples and bulk parts was performed using X-ray diffraction and scanning electron microscopy. The results of the X-ray diffraction analysis showed that no phase change occurs in the mechanochemical process, instead, the reduction of particle size and proper mixing of the powders encourages the SHS process and product formation. The best results were obtained to the bulk part that sintered at a temperature of 1500 °C with a hardness of 19.6 GPa, 99.4 % relative density, and 6.7 MPa.m1/2 toughness. Also, as the sintering temperature rises to 1600 °C and the density increases, the hardness of the part decreases due to grain growth.

کلیدواژه‌ها [English]

  • nano-composite
  • Alumina-Boron Carbide
  • mechanical alloying
  • Self-Propagation High-Temperature Synthesis (SHS)
  • Hot press
1.   Low, I. -M., Advances in ceramic matrix composites, Woodhead Publishing, (2014). https://doi.org/10.1533/9780857098825.1
2.   Szutkowska, M., Jaworska, L., Boniecki, M., Stobierski, L., Rozmus, M., "Mechanical behavior of diamond matrix composites with ceramic Ti3(Si,Ge)C2 bonding phase", International Journal of Refractory Metals and Hard Materials, Vol. 49, (2015), 302-306. https://doi.org/10.1016/j.ijrmhm.2014.09.017
3.   Lepakova, O. K., Karakchieva, N. I., Golobokov, N. N., Gal’chenko, N. K., Afanas’ev, N. I., "High-temperature synthesis of Ti–Si–B and Ti–Al–B composites and coatings", International Journal of Self-Propagating High-Temperature Synthesis, Vol. 29, No. 3, (2020), 150-156. https://doi.org/10.3103/S106138622003005X
4.   Zhu, Y., Luo, D., Li, Z., Wang, Y., Cheng, H., Wang, F., Chen, T., "Effect of sintering temperature on the mechanical properties and microstructures of pressureless-sintered B4C/SiC ceramic composite with carbon additive", Journal of Alloys and Compounds, Vol. 820, (2020), 153153. https://doi.org/10.1016/j.jallcom.2019.153153
5.   Zhang, W., Yamashita, S., Kita, H., "Progress in pressureless sintering of boron carbide ceramics–A review", Advances in Applied Ceramics, Vol. 118, No. 4, (2019), 222-239. https://doi.org/10.1080/17436753.2019.1574285
6.   Rabiezadeh, A., Ataie, A., Hadian, A. M., "Sintering of Al2O3–TiB2 nano-composite derived from milling assisted sol–gel method", International Journal of Refractory Metals and Hard Materials, Vol. 33, (2012), 58-64. https://doi.org/10.1016/j.ijrmhm.2012.02.013
7.   Fernández, C. P., Zabotto, F. L., Garcia, D., Kiminami, R. H. G. A., "In situ sol–gel co-synthesis under controlled pH and microwave sintering of PZT/CoFe2O4 magnetoelectric composite ceramics", Ceramics International, Vol. 42, No. 2, Part B, (2016), 3239-3249. https://doi.org/10.1016/j.ceramint.2015.10.115
8.   Simonenko, E. P., Simonenko, N. P., Simonenko, T. L., Grishin, A. V., Tal'skikh, K. Y., Gridasova, E. A., Papynov, E. K., Shichalin, O. O., Sevastyanov, V. G., Kuznetsov, N. T., "Sol-gel synthesis of SiC@Y3Al5O12 composite nanopowder and preparation of porous SiC-ceramics derived from it", Materials Chemistry and Physics, Vol. 235, (2019), 121734. https://doi.org/10.1016/j.matchemphys.2019.121734
9.   Laadoua, H., Pradeilles, N., Lucas, R., Foucaud, S., Clegg, W. J., "Preparation of ZrC/SiC composites by using polymer-derived ceramics and spark plasma sintering", Journal of the European Ceramic Society, Vol. 40, No. 5, (2020), 1811-1819. https://doi.org/10.1016/j.jeurceramsoc.2019.12.019
10. Razavi, M., Farajipour, A. R., Zakeri, M., Rahimipour, M. R., Firouzbakht, A. R., "Production of Al2O3–SiC nano-composites by spark plasma sintering", Boletín de la Sociedad Española de Cerámica y Vidrio, Vol. 56, No. 4, (2017), 186-194. https://doi.org/10.1016/j.bsecv.2017.01.002
11. Dash, A., Kim, B. -N., Klimke, J., Vleugels, J., "Transparent tetragonal-cubic zirconia composite ceramics densified by spark plasma sintering and hot isostatic pressing", Journal of the European Ceramic Society, Vol. 39, No. 4, (2019), 1428-1435. https://doi.org/10.1016/j.jeurceramsoc.2018.12.004
12. Martínez, V., Echeberria, J., "Hot isostatic pressing of cubic boron nitride–tungsten carbide/cobalt (cBN–WC/Co) composites: Effect of cBN particle size and some processing parameters on their microstructure and properties", Journal of the American Ceramic Society, Vol. 90, No. 2, (2007), 415-424. https://doi.org/10.1111/j.1551-2916.2006.01426.x
13. Echeberria, J., Ollo, J., Bocanegra-Bernal, M. H., Garcia-Reyes, A., Domínguez-Rios, C., Aguilar-Elguezabal, A., Reyes-Rojas, A., "Sinter and hot isostatic pressing (HIP) of multi-wall carbon nanotubes (MWCNTs) reinforced ZTA nanocomposite: Microstructure and fracture toughness", International Journal of Refractory Metals and Hard Materials, Vol. 28, No. 3, (2010), 399-406. https://doi.org/10.1016/j.ijrmhm.2009.12.007
14. Norfauzi, T., Hadzley, A. B., Azlan, U. A. A., Afuza, A. A., Faiz, M. M., Naim, M. F., "Fabrication and machining performance of ceramic cutting tool based on the Al2O3-ZrO2-Cr2O3 compositions", Journal of Materials Research and Technology, Vol. 8, No. 6, (2019), 5114-5123. https://doi.org/10.1016/j.jmrt.2019.08.034
15. Singh, S., Yin, J., Lun, F., Mondal, D. P., Kim, D., Lee, S. -H., "Significance of modification of slurry infiltration process for the precursor impregnation and pyrolysis process of SiCf/SiC composites", Journal of the European Ceramic Society, Vol. 40, No. 5, (2020), 2245-2251. https://doi.org/10.1016/j.jeurceramsoc.2020.01.009
16. Rabiezadeh, A., Hadian, A. M., Ataie, A., "Preparation of alumina/titanium diboride nano-composite powder by milling assisted sol–gel method", International Journal of Refractory Metals and Hard Materials, Vol. 31, (2012), 121-124. https://doi.org/10.1016/j.ijrmhm.2011.09.015
17. Swarnakar, A. K., Huang, S. G., Van der Biest, O., Vleugels, J., "Ultrafine Al2O3–B4C composites consolidated by pulsed electric current sintering", Journal of Alloys and Compounds, Vol. 499, No. 2, (2010), 200-205. https://doi.org/10.1016/j.jallcom.2010.03.166
18. Cai, K. F., McLachlan, D. S., Axen, N., Manyatsa, R., "Preparation, microstructures and properties of Al2O3–TiC composites", Ceramics International, Vol. 28, No. 2, (2002), 217-222. https://doi.org/10.1016/S0272-8842(01)00080-3
19. Suri, A. K., Subramanian, C., Sonber, J. K., Murthy, T. S. R. C., "Synthesis and consolidation of boron carbide: a review", International Materials Reviews, Vol. 55, No. 1, (2010), 4-40. https://doi.org/10.1179/095066009X12506721665211
20. Huang, H., Wang, X., Yang, J., Xu, K., Dai, S., "Research on the sintering property of Al2O3/B4C pellet", Fenmo Yejin Jishu/Powder Metallurgy Technology, Vol. 29, (2011), 190-193. https://doi.org/10.19591/j.cnki.cn11-1974/tf.2011.03.006
21. Jung, C. -H., Kim, C. -H., "Sintering and characterization of Al2O3-B4C composites", Journal of Materials Science, Vol. 26, No. 18, (1991), 5037-5040. https://doi.org/10.1007/BF00549888
22. Ebrahimi-Kahrizsangi, R., Torabi, O., "Combination of mechanochemical activation and self-propagating behavior for the synthesis of nanocomposite Al2O3/B4C powder", Journal of Alloys and Compounds, Vol. 514, (2012), 54-59. https://doi.org/10.1016/j.jallcom.2011.10.075
23. Shaker, E., Sakaki, M., Jalaly, M., Bafghi, M., "Microwave synthesis of B4C–Al2O3 composite in a mechanically activated Al/B2O3/C powder mixture", Iranian Journal of Materials Science and Engineering, Vol. 12, (2015), 89. https://doi.org/10.22068/ijmse.12.4.89
24. Nakisa, O., Bavand Vandchali, M., Samadi, H., "The influence of mechanical activation on microwave combustion synthesis of Al2O3-B4C composite powder", Ceramic Science & Engineering, Vol. 4, No. 4, (2016), 11-24. http://ijcse.ir/article-1-382-en.html
25. Gokmese, H., Bostan, B., Baris, M., "Fabrication and characterization of nanoceramic particle Al2O3/B4C composite by mechanochemical approach", Inorganic and Nano-Metal Chemistry, Vol. 47, No. 3, (2017), 416-422. https://doi.org/10.1080/15533174.2016.1186075
26. Guo, W. -M., Zhang, Z. -L., Li, J. -X., You, Y., Wu, S. -H., Lin, H. -T., "Improvement of densification and mechanical properties of Al2O3–B4C ceramics", Ceramics International, Vol. 42, No. 9, (2016), 11486-11489. https://doi.org/10.1016/j.ceramint.2016.04.025
27. Cavdar, U., Altintaş, A., Karaca, B., "In-situ compaction and sintering of Al2O3-B4C composites by using a High-Frequency Induction System", Metallic Materials, Vol. 56, (2018), 177-181. https://doi.org/10.4149/km_2018_3_177
28. Chinn, R. E., Ceramography: Preparation and Analysis of Ceramic Microstructures, ASM International, (2002). https://www.asminternational.org/home/-/journal_content/56/10192/06958G/PUBLICATION
29. Anstis, G. R., Chantikul, P., Lawn, B. R., Marshall, D. B., "A critical evaluation of indentation techniques for measuring fratcure toughness: I, Direct crack measurements", Journal of the American Ceramic Society, Vol. 64, No. 9, (1981), 533-538. http://doi.org/10.1111/j.1151-2916.1981.tb10320.x
30. Barin, I., Platzki, G., Thermochemical data of pure substances, VCH, Weinheim; New York, (1995). https://doi.org/10.1002/9783527619825
31. Suryanarayana, C., "Mechanical alloying and milling", Progress in Materials Science, Vol. 46, No. 1, (2001), 1-184. https://doi.org/10.1016/S0079-6425(99)00010-9
32. Heshmati-Manesh, S., Jabbarnia, A., "Influence of process control agents on mechanochemical synthesis of NiAl/Al2O3 nano composite powder", AIP Conference Proceedings, Vol. 1217, (2010). https://doi.org/10.1063/1.3377855
33. Ji, X., Ji, C., Cheng, J., Shan, Y., Tian, S., "Erosive wear resistance evaluation with the hardness after strain-hardening and its application for a high-entropy alloy", Wear, Vol. 398-399, (2018), 178-182. https://doi.org/10.1016/j.wear.2017.12.006
34. Datye, A., Koneti, S., Gomes, G., Wu, K. -H., Lin, H. -T., "Synthesis and characterization of aluminum oxide–boron carbide coatings by air plasma spraying", Ceramics International, Vol. 36, No. 5, (2010), 1517-1522. https://doi.org/10.1016/j.ceramint.2010.02.024
35. Wang, R., Li, D., Wang, X., Li. W., "Temperature dependent fracture toughness of the particulate-reinforced ultra-high-temperature-ceramics considering effects of change in critical flaw size and plastic power", Composites Part B: Engineering, Vol. 158, (2019), 28-33. https://doi.org/10.1016/j.compositesb.2018.09.049
36. Zhang, J., Wang, C., Zhang, Y., Deng, Y., "Effects of creep aging upon Al-Cu-Li alloy: Strength, toughness and microstructure", Journal of Alloys and Compounds, Vol. 764, (2018). https://doi.org/10.1016/j.jallcom.2018.06.103