نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک، مرکزی، ایران

چکیده

در این پژوهش، فرایند اتصال فاز مایع گذرا، روی آلیاژ نایمونیک 75، توسط لایه واسط AWS BNi-2، به ضخامت 32 میکرون، مورد بررسی قرار گرفت. فرایند اتصال فاز مایع گذرا، در سه دمای مختلف 1050، 1100 و 1150 درجه سلسیوس، به مدت 60 دقیقه، انجام شد. از پراش پرتو ایکس، برای شناسایی مشخصات فازهای بورایدی در اتصال، استفاده شد. نتایج آزمون­ها برای آلیاژ نایمونیک 75، نشان داد که زمان و درجه حرارت، تأثیر قابل مشاهده‌ای، روی تشکیل فازهای بورایدی، مانند بوراید کروم و بوراید نیکل دارد. همچنین، استحکام برشی این اتصالات، اندازه-گیری شد. نتایج، حاکی از آن است که ساختار اتصال، از سه منطقه انجماد هم­دما، منطقه انجماد غیرهم­دما و منطقه متأثر از نفوذ، تشکیل شده بود. نواحی متأثر از نفوذ نیز، با افزایش دما، از بین رفت و همگن­سازی نسبی، در اتصالات، ایجاد گردید. نتایج حاصل از استحکام برشی، نشان داد با افزایش دمای اتصال­دهی، از 1050 به 1150 درجه سلسیوس، استحکام برشی، از 63 به 152 مگاپاسکال، افزایش یافت. بررسی سطوح شکست اتصالات در آلیاژ نایمونیک 75، نشان داد که با افزایش دمای اتصال، حالت شکست، از ترد به نیمه ترد و در نهایت، نرم، تغییر می­یابد که این موضوع، ناشی از کاهش ترکیبات بین­فلزی و ساختار یوتکتیکی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Phase and Microstructural Evolutions and Fracture Behavior of Nimonic 75 Transient Liquid Phase Joints at Different Temperatures

نویسندگان [English]

  • Hossein Mostaan
  • Amir Hassan Mahboubi
  • Bahman Mirzakhani
  • Fardin Nematzadeh

Department of Materials and Metallurgical Engineering, Faculty of Engineering, Arak University, P. O. Box: 38156-8-8349, Arak, Markazi, Iran

چکیده [English]

In this research, the transient liquid phase bonding process on Nimonic alloy 75 was investigated using an AWS BNi-2 interlayer with a 32 μm thickness. The transient liquid phase bonding process was performed at 1050 °C, 1100 °C, and 1150 °C for 60 min. X- ray diffraction (XRD) technique was employed to identify the Boride phases in the joint area. For the Nimonic 75 alloy, the experimental results showed that the temperature and time have an evident effect on the phase constituents of the Boride phases, i.e., CrB and Ni2B. Also, the shear strength of TLP joints was measured. The results indicated that the joint microstructure consisted of three zones, including isothermal solidification zone (ISZ), thermal solidification zone, and diffusion affected zone. The diffusion affected zone of the Nimonic 75 alloy was vanished and the homogenization process occurred by increasing the bonding time. The results of shear strength showed that the bonding strength was increased from 63 MPa to 152 MPa with increasing the bonding temperature from 1050 to 1150 °C, respectively. Analysis of fracture surfaces showed that the fracture mode changed from brittle, semi-brittle and finally ductile mode by increase in bonding temperature which is due to the decrease in volume fraction of brittle intermetallic phases and eutectic structureany sort of image, illustration, figure, or table.
 

کلیدواژه‌ها [English]

  • Transient liquid phase bonding
  • Nimonic 75
  • Fracture behavior
  • Phase evolutions
1.   Chaturvedi M. C., Richards N., Repair and overhaul of hot end gas turbine components, Montreal, Quebec, (2002).
2.   Lin, T. -S., Li, H. -X., He, P., Yang, X., Huang, Y. -D., Li, L., Han, L., "Effect of bonding parameters on microstructures and properties during TLP bonding of Ni-based super alloy", Transaction of Nonferrous Metal Society of China, Vol. 22, No. 9, (2012), 2112-2117. https://doi.org/10.1016/S1003-6326(11)61436-2
3.   Bakhtiari, R., Ekrami, A., "Transient liquid phase bonding of FSX-414 superalloy at the standard heat treatment condition", Materials Characterization, Vol. 66, (2012), 38-45. https://doi.org/10.1016/j.matchar.2012.02.002
4.   Zhang, B., Sheng, G., Jiao, Y., Gao, Z., Gong, X., Fan, H., Zhong, J., "Precipitation and evolution of boride in diffusion affected zone of TLP joint of Mar-M247 superalloy", Journal of Alloys & Compounds, Vol. 695, (2017), 3202-3210. https://doi.org/10.1016/j.jallcom.2016.11.306
5.   Zhang, G., Zhang, J., Pei, Y., Li, S., Chai, D., "Joining of Al2O3p/Al composites by transient liquid phase (TLP) bonding and a novel process of active-transient liquid phase (A-TLP) bonding", Materials Sciece and Engineering A, Vol. 488, No. 1, (2008), 146-156. https://doi.org/10.1016/j.msea.2007.11.084
6.   Huang, J., Dong, Y., Wan, Y., Zhao, X., Zhang, H., "Investigation on reactive diffusion bonding of SiCp/6063 MMC by using mixed powders as interlayers", Jornal of Materials Processing and Technology, Vol. 190, No. 1, (2007), 312-316. https://doi.org/10.1016/j.jmatprotec.2007.02.028
7.   Roh, S., Lee, C., Rhee, B., "Effects of austenite regeneration heat treatment on the TLP bonding of duplex stainless steel UNS S32750 using Fe-B-Si insert metal", Materials Chemistry and Physics, Vol. 207, (2018), 402-411. https://doi.org/10.1016/j.matchemphys. 2017.11.019
8.   Arafin, M. A., Medraj, M., Turner, D. P., Bocher, P., "Effect of alloying elements on the isothermal solidification during TLP bonding of SS 410 and SS 321 using a BNi-2 interlayer", Materials Chemistry and Physics, Vol. 106, No. 1, (2007), 109-119. https://doi.org/10.1016/j.matchemphys.2007.05.049
9.   Khazaei, B. A., Asghari, G., Bakhtiari, R., "TLP bonding of dissimilar FSX-414/IN738 system with MBF80 interlayer: Prediction of solid/liquid interface location", Transaction of Nonferrous Metal Society of China, Vol. 24, No. 4, (2014), 996-1003. https://doi.org/10.1016/S1003-6326(14)63154-X
10. Zhang, L. X., Chang, Q., Sun, Z., Xue, Q., Feng, J. C., "Effects of boron and silicon on microstructural evolution and mechanical properties of transient liquid phase bonded GH3039/ IC10 joints", Journal of Manufacturing Process, Vol. 38, (2019), 167-173. https://doi.org/10.1016/j.jmapro.2019.01.016
11. Amirkhani, A., Beidokhti, B., Shirvani, K., Rahimipour, M. R., "Two-step heating transient liquid phase bonding of Inconel 738LC", Jornal of Materials Processing and Technology, Vol. 266, (2019) 1-9. https://doi.org/10.1016/j.jmatprotec.2018.10.008
12. Vazirian, S., Farzadi, A., "Dissimilar transient liquid phase bonding of Ti–6Al–4V and Co–Cr–Mo biomaterials using a Cu interlayer: Microstructure and mechanical properties", Journal of Alloys & Compounds, Vol. 105, (2020), 154-160. https://doi.org/10.1016/j.jallcom.2020.154510
13. Xu, Z., Li, Z., Peng, L., Yan, J., "Ultra-rapid transient liquid phase bonding of Mg alloys within 1 s in air by ultrasonic assistance", Materials and Design, Vol. 161, (2019) 72-79. https://doi.org/10.1016/j.matdes.2018.11.015
14. Cook, G., Sorensen, C., "Overview of transient liquid phase and partial transient liquid phase bonding", Journal of Materials Science, Vol. 46, (2011), 5305-5323. https://doi.org/10.1007/s10853-011-5561-1
15. de Portu, G. Glaeser, A. M., Reynolds, T. B., Takahashi, Y., Boffelli, M., Pezzotti, G., "A comparative assessment of metal-Al2O3 joints formed using two distinct transient-liquid-phase-forming interlayers", Journal of Materials Science, Vol. 50, No. 6, (2015), 2467-2479. https://doi.org/10.1007/s10853-014-8803-1
16. Nikdin, H., Ekrami, A. A., "Effect of transient liquid phase diffusion bonding on mechanical properties of aisi 304 stainless steel", Materials Science & Engineering Sharif, Vol. 23, No. 39, (2007), 5-9. http://sjme.journals.sharif.edu/article_5867.html?lang=en
17. Hadibeyk, S., Beidokhti, B., Sajadi, A., "Investigation of TLP bonded microstructure between Inconel 738 and FSX 414",” Proceedings of 4th International Engineering Materials & Metallurgy Conference, Tehran, (2015). http://4.imatconf.cnf.ir/en/
18. Binesh, B., Jazayeri Gharehbagh, A., Foroghi, A. R., "Microstructure evolution and mechanical properties of TLP bonded joint of IN-738LC superalloy using MBF-20 amorphous foil TT IN-738LC", Journal of Advanced Materials in Engineering (Esteghlal), Vol. 35, No. 3, (2016), 123-137. https://doi.org/10.18869/acadpub.jame.35.3.123
19. Liu, M., Sheng, G., He, H., Jiao, Y., "Microstructural evolution and mechanical properties of TLP bonded joints of Mar-M247 superalloys with Ni-Cr-Co-W-Ta-B interlayer", Journal of Materials Processing and Technology, Vol. 246, (2017), 245-251. https://doi.org/10.1016/j.jmatprotec.2017.03.021
20. Abbasi-Khazaei, B., Jahanbakhsh, A., Bakhtiari, R., "TLP bonding of dissimilar FSX-414/IN-738 system with MBF-80 interlayer: The effect of homogenizing treatment on microstructure and mechanical properties", Materials Sciece and Engineering A, Vol. 651, (2016), 93-101. https://doi.org/10.1016/j.msea.2015.10.087
21. Harris, K., Erickson, G., Schwer, R., "MAR M 247 derivations - CM 247 LC DS alloy and CMSX single crystal alloys: Properties & performance", Superalloys, Vol. 27, (1984), 12-24. https://doi.org/10.7449/1984/Superalloys_1984_221_230
22. Abdolvand, R., Atapour, M., Shamanian, M., Allafchian, A., "The effect of bonding time on the microstructure and mechanical properties of transient liquid phase bonding between SAF 2507 and AISI 304", Journal of Manufacturing Process, Vol. 25, (2017), 172-180. https://doi.org/10.1016/j.jmapro.2016.11.013
23. Khakian, M., Nategh, S., Mirdamadi, S., "Microstructural evolution during the transient liquid-phase bonding of dissimilar nickel-based superalloys of IN738LC and NIMONIC 75", Materials and Tehnology, Vol. 50, (2016) 365-371.  https://doi.org/10.17222/mit.2015.072
24. Yuan, X., Kim, M. B., Kang, C. Y., "Microstructural evolution and bonding behavior during transient liquid-phase bonding of a duplex stainless steel using two different Ni-B-based filler materials", Metallurgical and Materials Transaction A, Vol. 42, No. 5, (2011), 1310-1324.  https://doi.org/10.1007/s11661-010-0534-6
25. Ohsasa, K., Narita, T., Shinmura, T., "Numerical modeling of the transient liquid phase bonding process of Ni using Ni-B-Cr ternary filler metal", Journal of Phase Equilibria, Vol. 20, No. 3, (1999), 199-210.  https://doi.org/10.1361/105497199770335721