نوع مقاله : مقاله کامل پژوهشی

نویسنده

گروه شیمی، دانشکده علوم پایه، دانشگاه آیت ا... بروجردی، بروجرد، لرستان، ایران

چکیده

هدف این کار، ساخت باتری لیتیم-هوا با کارایی بالا، طراحی ساده و ارزان ­قیمت است. در این طراحی، از نانوکاتالیزور بر پایه کربن/CuFe2O4، با اندازه ذرات حدود 30 نانومتر، به منظور اصلاح کاتد باتری، استفاده شد. به منظور افزایش ایمنی، طول عمر و ظرفیت دشارژ باتری، از مایع یونی 1-هگزیل-3-متیل ایمیدازولیوم کلراید [Hmim][Cl]، به­عنوان الکترولیت با رسانایی و پایداری حرارتی بالا، استفاده شد. ویژگی­ های فیزیکی و شیمیایی نانوکاتالیزور، به کمک طیف­ سنجی مادون قرمز تبدیل فوریه (FTIR)، آنالیز وزن­ سنجی حرارتی (TGA)، پراش اشعه ایکس (XRD) و میکروسکوپ الکترونی روبشی (SEM)، تعیین شد. ظرفیت دشارژ باتری در دانسیته جریان mA/cm 1/0، برای باتری بدون و با کاتالیزور، به­ ترتیب، mAh/g 528 و mAh/g 677، بدست آمد. تعداد چرخه­ های شارژ/دشارژ باتری دارای نانوکاتالیزور، نسبت به باتری بدون آن، به­ طور قابل ملاحظه­ ای (تا 1000 چرخه)، افزایش یافت. پایین بودن فشار بخار (نقطه جوش> °C 350) و بالا بودن میزان پایداری گرمایی (پایداری در برابر تجزیه شدن) الکترولیت، سبب افزایش طول عمر باتری می ­شود. پایین بودن میزان اضافه پتانسیل نیز از دیگر مزایای باتری طراحی شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Modified Cathode with Carbon/CuFe2O4 Nanocatalyst and Electrolyte of 1-Hexyl-3-Methylimidazolium Chloride ([Hmim][Cl]) on the Performance and Lifetime of Lithium-Air Battery

نویسنده [English]

  • Mehdi Hosseini

Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd, Lorestan, Iran

چکیده [English]

The purpose of this work is to make lithium-air battery with a high performance, simple design, and inexpensive. In this design, a carbon/CuFe2O4 based nanocatalyst with a particle size of ≈ 30 nm was used to modify the battery cathode. The ionic liquid of 1-hexyl-3-methylimidazolium chloride [Hmim][Cl] was used as an electrolyte with high conductivity and thermal stability to increase the safety, lifetime, and discharge capacity of the battery. Physiochemical properties of the nanocatalyst were determined by Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). The battery discharge capacity at a current density of 0.1 mA/cm for a battery without and with nanocatalyst was obtained 528 mAh/g and 677 mAh/g, as respectively. The charge-discharge cycles of battery containing nanocatalyst were significantly increased (up to 1000 cycles) compared to the sole battery. Low vapor pressure (boiling point > 350 °C) and high thermal stability (stability against decomposition) of the electrolyte increase battery lifetime. One of the advantages of the designed battery is low overpotential amount.

کلیدواژه‌ها [English]

  • Li-Air Battery
  • Carbon/CuFe2O4 Nanocatalyst
  • [Hmim][Cl] Ionic Liquid Electrolyte
1.   Hosseini, M., Soleymani, M., Dashti-Khavidaki, H., "Evaluation of NP-MnFe2O4 as an efficient nanocatalyst for air cathode and 1-octyl-3-methyl imidazolium hexafluorophosphate [Omim][PF6] as a green electrolyte in rechargeable lithium-air battery", Iranian Journal of Analytical Chemistry, Vol. 6, (2019), 54-62. https://doi.org/10.30473/IJAC.2019.46621.1148
2.   Kumar-Thapa, A., Ishihara, T., "Mesoporous alpha-MnO2/Pd catalyst air electrode for rechargeable lithium–air battery", Journal of Power Sources, Vol. 196 (16), (2011), 7016-7020. https://doi.org/10.1016/j.jpowsour.2010.09.112
3.   Abraham, K. M., Jiang, Z., "A polymer electrolyte-based rechargeable lithium/oxygen battery", Journal of Electrochemical Society, Vol. 143, No. 1, (1996), 7016-7020. https://doi.org/10.1149/1.1836378
4.   Read, J., Mutolo, K., Ervin, M., Behl, W., Wolfenstine, J., Driedger, A., Foster, D., "Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery", Journal of Electrochemical Society, Vol. 150, (2003), A1351-A1356. https://doi.org/10.1149/1.1606454
5.   Elia, G. A., Hassoun, J., Kwak, W. J., Sun, Y. K., Scrosati, B., Mueller, F., Bresser, D., Passerini, S., Oberhumer, P., Tsiouvaras, N., Reiter, J., "An advanced lithium-air battery exploiting an ionic liquid-based electrolyte", Nano Letter, Vol. 14, No. 11, (2014), 6572-6577. https://doi.org/10.1021/nl5031985
6.   Hosseini, M., Dalali, N., Moghaddasifar, S., "Ionic liquid for homogeneous liquid−liquid microextraction separation/preconcentration and determination of cobalt in saline samples", Journal of Analytical Chemistry, Vol. 69, No. 12, (2014), 1141-1146. https://doi.org/10.1134/S1061934814120090
7.   Hosseini, M., Dalali, D., "Use of ionic liquids for trace analysis of methyl tert-butyl ether in water samples using in situ solvent formation microextraction technique and determination by GC/FID", Separation Science and Technology, Vol. 49, (2014), 1889-1894. https://doi.org/10.1080/01496395.2014.894524
8.   Kuboki, T., Okuyama, T., Ohsaki, T., Takami, N., "Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte", Journal of Power Sources, Vol. 146, (2005), 766-769. https://doi.org/10.1016/j.jpowsour.2005.03.082
9.   Yang, W., Salim, J., Ma, C., Ma, Z., Sun, C., Li, J., Chen, L., Kim, Y., "Flowerlike Co3O4 microspheres loaded with copper nanoparticle as an efficient bifunctional catalyst for lithium–air batteries", Electrochemistry Communications, Vol. 28, (2013), 13-16. https://doi.org/10.1016/j.elecom.2012.12.007
10. Hosseini, M., Dolatshahi, N., Soleymani, M., Oskoeian, Gh., "Synthesis and evaluation the ability of conductive polymeric nanocatalyst based on Co-Fe (PPy/Co/Fe) to increase and to improve the performance of cathode in lithium-air batteries", Journal of Applied Research in Chemistry, Vol. 14 (2020), 15-25. http://jacr.iau-tnb.ac.ir/article_673263.html
11. Hosseini, M., Jalili-Jahani, N., "Increasing in the capacity and lifetime of lithium-air batteries using nano-composite of MnFe2O4/C as catalyst and ionic liquid of [C2mim][BF4] as electrolyte", Journal of Applied Research in Chemistry, Vol. 13 (2019), 89-103. (In Farsi) http://jacr.iau-tnb.ac.ir/article_669019.html
12. Zhang, J., Chen, G., An, M., Wang, P., "Preparation of Pt/Au catalytic particles on positive electrode of Li/air battery using pulse electroplating", International Journal of Electrochemical Science, Vol. 7, (2012), 11957-11965. https://www.semanticscholar.org/paper/Preparation-of-PtAu-Catalytic-Particles-on-Positive-Zhang-Chen/e21de293c3f8085ac430a08599c77b61883c6ba4
13. Hosseini, M., Dalali, N., Mohammad Nejad, S., "A new mode of homogeneous liquid–liquid microextraction (HLLME) based on ionic liquids: In situ solvent formation microextraction (ISFME) for determination of lead", Journal of the Chinese Chemical Society, Vol. 59, (2012), 872-878. https://doi.org/10.1002/jccs.201100526
14. Kazeminezhad, I., Farajianpour, F., Ramezani, Z., "Synthesis of CuFe2O4 nanoparticles by co-precipitation method and their application in ethanol gas sensor", Journal of Research on Many-Body Systems, Vol. 1, (2011), 32-38. http://ecc.isc.gov.ir/showJournal/25116/27026/508703
15. Altincekica, T. G., Boza, I., Baykal, A., Kazan, S., Topkaya, R., Toprak, M. S., "Synthesis and characterization of CuFe2O4 nanorods synthesized by polyol route", Journal of Alloys and Compounds, Vol. 493, (2010), 493-498. https://doi.org/10.1016/j.jallcom.2009.12.140
16. Taska, J. E., Quincoces, C. E., Lavat, A., Alvarez, A. M., Gonzalez, M. G., "Preparation and characterization of CuFe2O4 bulk catalyst", Ceramics International, Vol. 37, No. 3, (2011), 903-812. https://doi.org/10.1016/j.ceramint.2010.10.023
17. Agouriane, E., Rabi, B., Essoumhi, A., Razouk, A., Sahlaoui, M., Costa, B. F. O., Sajieddine, M., "Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by co-precipitation", Journal of Materials Environment Science, Vol. 7, No. 11, (2016), 4116-4120. https://www.jmaterenvironsci.com/Document/vol7/vol7_N11/440-JMES-2641-Agouriane.pdf