نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه پژوهشی متالورژی، پژوهشگاه نیرو، تهران، تهران، ایران

چکیده

دوفلزی­های آلومینیوم- مس، کاربرد فراوانی در خطوط انتقال و توزیع نیرو و دیگر ادوات الکتریکی و الکترونیکی یافته­ اند. در حین کار و در اثر عبور جریان الکتریکی، این دوفلزی ­ها گرم شده و افزایش دما، منجر به تغییرات ریزساختاری و خواص در فصل مشترک آنها می ­شود. هدف از انجام این پژوهش، بررسی رفتار پیرسازی دوفلزی مس- آلومینیوم ساخته شده به روش جوش اصطکاکی، تحت تأثیر متغیرهای جریان و زمان بود. پیرسازی دوفلزی ­ها، تحت جریان الکتریکی 250A تا 500A ، سبب گرم شدن قطعات، به ترتیب، تا دمای اولیه ̊C150 و ̊C250  شد. نتایج نشان داد که افزایش جریانالکتریکی از 250A تا 500A  منجر به افزایش نرخ رشد فازهای بین فلزی و افزایش مقاومت الکتریکی می‌شود. همچنین، فازهای متحمل در فصل مشترک، CuAl2 ، CuAl، Cu4Al3، Cu3Al2 هستند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Influence of the AC Electrical Constant Current on the Aging Behavior of Al/Cu Bimetal

نویسندگان [English]

  • Azam Bajgholi
  • Mahdi Mirzaei
  • Mohammad Reza Jahangiri

Metallurgy Research Group, Niroo Research Institute, Tehran, Tehran, Iran

چکیده [English]

 Al/Cu bimetals have many applications in power lines. During operation and due to the crossing electrical current, bimetals are heated and the temperature increases, resulting in microstructural changes and properties alternation in the interface areas. The aim of this article is to study aging treatment of friction welded Cu/Al bimetallic joint, in the presence of electrical current. Aging of bimetals was carried out under electric currents of 250 A and 500 A, which caused the components to warm up to initial temperatures of 150 °C and 250 °C, respectively. The results show that electrical current increase from 250 A to 500 A leads to increase intermetallic grows rate and increase electrical resistance. Also, the possible stable phases at the interface are CuAl2, CuAl, Cu4Al3, and Cu3Al2.

کلیدواژه‌ها [English]

  • Bimetal clamp
  • Friction welding
  • Aluminum-Copper Aging
  • electrical aging
  • Intermetallic phases
 
 1.   Abbasi, M., Taheri, A. K., Salehi, M. T., "Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process", Journal of Alloys and Compounds, Vol. 319, No. 1-2, (2001), 233-241. https://doi.org/10.1016/S0925-8388(01)00872-6
2.   Berski, S., Stradomski, Z., Dyja, H., "Quality of bimetal Al-Cu joint after explosive cladding", Journal of Achievements in Materials and Manufacturing Engineering, Vol. 22, No. 1, (2007), 73-76. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.527.8310&rep=rep1&type=pdf
3.   Lee, W. B., Bang, K. S., Jung, S. B., "Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing", Journal of Alloys and Compounds, Vol. 390, No. 1-2, (2005), 212-219. https://doi.org/10.1016/j.jallcom.2004.07.057
4.   Koberna, M., Fiala, J., "Intermetallic phases in cold-welded Al- Cu joints", Materials Science and Engineering: A, Vol. 159, No.2, (1992), 231-236.https://doi.org/10.1016/0921-5093(92)90293-A
5.   Xue, P., Xiao, B. L., Ni, D. R., Ma, Z. Y., "Enhanced mechanical properties of friction stir welded dissimilar Al-Cu joint by intermetallic compounds", Materials Science and Engineering: A, Vol. 527, No. 21-22, (2010), 5723-5727. https://doi.org/10.1016/j.msea.2010.05.061
6.   Cheng, X., Gao, Y., Fu, H., Xing, J., Bai, B., "Microstructural characterization and properties of Al/Cu/steel diffusion bonded joints", Metals and Materials International, Vol. 16, No. 4, (2010), 649-655. https://doi.org/10.1007/s12598-009-0092-5
7.   Ouyang, J., Yarrapareddy, E., Kovacevic, R., "Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper", Journal of Materials Processing Technology, Vol. 172, No. 1, (2006), 110-122. https://doi.org/10.1016/j.jmatprotec.2005.09.013
8.   Liu, P., Shi, Q., Wang, W., Wang, X., Zhang, Z., "Microstructure and XRD analysis of FSW joints for copper T2/aluminium 5A06 dissimilar materials", Materials letters, Vol. 62, No. 25, (2008), 4106-4108. https://doi.org/10.1016/j.matlet.2008.06.004
9.   Murr, L. E., Li, Y., Flores, R. D., Trillo, E. A., McClure, J. C., "Intercalation vortices and related microstructural features in the friction-stir welding of dissimilar metals", Materials Research Innovations, Vol 2. No. 3, 150-163. https://doi.org/10.1007/s100190050078
10. Abdollah-Zadeh, A., Saeid, T., Sazgari, B., "Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints", Journal of alloys and Compounds, Vol. 460, No. 1-2, (2008), 535-538. https://doi.org/10.1016/j.jallcom.2007.06.009
11. Chih-Yuan, C. H. E. N., Weng-Sing, H., "Effect of annealing on the interfacial structure of aluminum-copper joints", Materials Transactions, Vol. 48, No. 7, (2007), 1938-1947. https://doi.org/10.2320/matertrans.MER2006371
12. Xu, H., Liu, C., Silberschmidt, V., "Effect of thermal aging on interfacial behaviour of copper ball bonds", Proceedings of 2nd Electronics System-Integration Technology Conference, IEEE, (2008), 891-896. https://doi.org/10.1109/ESTC.2008.4684470
13. Ming, X., Zhang, Y., "Temperature effect on IMC growth behavior of thin film copper-aluminum system in electronic packaging", Proceedings of 11th International Conference on Electronic Packaging Technology & High Density Packaging, IEEE, (2010), 371-375. https://doi.org/10.1109/ICEPT.2010.5582355
14. Lu, Y. H., Wang, Y. W., Appelt, B. K., Lai, Y. S., Kao, C. R., "Growth of CuAl intermetallic compounds in Cu and Cu (Pd) wire bonding", Proceedings of 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), IEEE, (2011), 1481-1488. https://doi.org/10.1109/ECTC.2011.5898706
15. Tan, Y. Y., Yong, F. K., "Cu-Al IMC micro structure study in Cu wire bonding with TEM", Proceedings of 17th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, IEEE, (2010), 1-4. https://doi.org/10.1109/IPFA.2010.5532226
16. Braunovic, M. Aleksandrov, N., "Intermetallic compounds at aluminum-to-copper and copper-to-tin electrical interfaces",  Proceedings of the Thirty-Eighth IEEE Holm Conference on Electrical Contacts, (1992), 25-34. https://doi.org/10.1109/HOLM.1992.246938
17. Braunovic, M., Alexandrov, N., "Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current", IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, Vol. 17, No. 1, (1994), 78-85. https://doi.org/  10.1109/95.296372
18. Kim, D. G., Jung, S. B., "Intermetallic compound formation and growth kinetics in flip chip joints using Sn–3.0 Ag–0.5 Cu solder and Ni–P under bump metallurgy", Materials Transactions, Vol. 46, No. 6, (2005), 1295-1300. https://doi.org/10.2320/matertrans.46.1295
19. Yoon, J. W., Kim, S. W., Jung, S. B., "Interfacial reaction and mechanical properties of eutectic Sn–0.7 Cu/Ni BGA solder joints during isothermal long-term aging", Journal of Alloys and Compounds, Vol. 391, No. 1-2, 82-89. https://doi.org/10.1016/j.jallcom.2004.09.001