بررسی خواص پوشش دولایه TiO2/MgO روی آلیاژ منیزیم تشکیل شده با کندوپاش مغناطیسی

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد کرج، کرج، البرز، ایران

2 پژوهشکده نیمه‌هادی‌ها، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

چکیده

امروزه آلیاژهای منیزیم به عنوان مواد زیست­تخریب­پذیر نسل جدید، توجه محققین زیادی را به خود جلب کرده­اند. در این پژوهش، جهت بهبود زیست­سازگاری آلیاژهای منیزیم، پوشش دولایه TiO2/MgO به روش کندوپاش مغناطیسی روی آلیاژ منیزیم AZ91 تشکیل شد و ریزساختار، رفتار خوردگی و خواص زیست­سازگاری پوشش تحت بررسی قرار گرفت. ریزساختار پوشش با استفاده از میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) تحت مطالعه قرار گرفت و ترکیب فازهای موجود به کمک پراش اشعه ایکس(XRD)  تعیین شدند. رفتار خوردگی آلیاژها نیز به کمک آزمون الکتروشیمیایی پلاریزاسیون در محلول شبیه­سازی شده بدن (SBF) مورد سنجش قرار گرفت. به منظور بررسی زیست­سازگاری نمونه­ها با محیط بدن از آزمون ارزیابی کمّی سمّیت  (MTT)و چسبندگی سلولی استفاده شد. نتایج حاصل نشان داد که پتانسیل خوردگی پس از پوشش­دهی سطح با TiO2/MgO مثبت­تر شده به گونه­ای که از V 532/1- برای نمونه بدون پوشش، به V 436/1- برای نمونه با پوشش تغییر یافته است. مورفولوژی پوشش تشکیل شده شبه­کروی بوده و مطابق نتایج آنالیز XRD، ترکیبات MgTi2O5 و MgTiO3  تشکیل گردید. نتایج آزمون زیست­سازگاری نیز نشان داد که درصد زنده ماندن سلول­ها روی نمونه پوشش داده شده نسبت به نمونه بدون پوشش افزایش پیدا کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Properties of TiO2/MgO Dual Layer Thin Film Formed by Magnetron Sputtering on Mg Alloy

نویسندگان [English]

  • Mohsen Samiee 1
  • Zahra Sadat Seyedraoufi 1
  • Mohammad Javad Eshraghi 2
1 Department of Metallurgy and Materials Engineering, Faculty of Engineering, Karaj Branch, Islamic Azad University, Karaj, Alborz, Iran
2 Department of Semiconductors, Materials and Energy Research Center, MeshkinDasht, Alborz, Iran
چکیده [English]

Abstract     Nowadays, magnesium alloys such as a new generation of biodegradable materials have been noticed by researchers. In this study, to the sanitation of biodegradability and biocompatibility of magnesium alloys, TiO2/MgO dual layer coating was formed by magnetron sputtering on AZ91 and the microstructure, corrosion behavior and biocompatibility properties of coating were investigated. The coating microstructure was studied via field emission scanning electron microscopy (FESEM) X-ray diffraction (XRD). The corrosion resistance of the substrate and coated sample was evaluated by electrochemical polarization test in simulated body solution (SBF). To evaluate biocompatibility MTT and cell viability tests were used. The results showed that the corrosion potential after the surface coating with TiO2/ MgO was more positive, changing from 1.532 V for the uncoated sample to 1.436 V for the coated sample.. The coating was observed in quasi-spherical morphology with MgTi2O5 and MgTiO3 phases in interface of coating and substrate and two layers of coating too according to XRD analysis results. The results of the biocompatibility tests also showed that the viability of the osteoblastic cells on the coated sample increased compared to substrate.

کلیدواژه‌ها [English]

  • Mg Alloy
  • TiO2/MgO coating
  • Magnetron Sputtering Corrosion
  • Biocompatibility
1.   Zhao, M., Liu, M., Song, G., Atrens, A., "Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91", CorrosionScience, Vol. 50, (2008), 1939-1953. https://doi.org/10.1016/j.corsci.2008.04.010
2.   Cerri, E., Leo, P., Marco P., "Hot compression behavior of the AZ91 magnesium alloy produced by high pressure die casting", Materials Processing Technology, Vol. 189, (2007), 97-106. https://doi.org/10.1016/j.jmatprotec.2007.01.010
3.   Iranipour, N., Azari Khosroshahi, R., Parvini Ahmadi, N., "Study on the electroless Ni–P deposition on WE43 magnesium alloy", Surface and Coatings Technology”, Vol. 205, (2010), 2281-2286. https://doi.org/10.1016/j.surfcoat.2010.09.006
4.   Elsentriecy, H.H., Azumi, K., "Electroless Ni–P deposition on AZ91 D magnesium alloy prepared by molybdate chemical conversion coatings", Electrochemical Society, Vol. 156, (2009), 70-77. https://doi.org/10.1149/1.3040243
5.   Zhang, W.X., Jiang, Z.H., Li, G.Y., Jiang, Q., Lian, J.S., "Electroless Ni–Sn–P coating on AZ91D magnesium alloy and its corrosion resistance", Surface and Coatings Technology, Vol. 202, (2008), 2570-2576. https://doi.org/10.1016/j.surfcoat.2007.09.023
6.   Gu, C., Lian, J., He, J., Jiang, Z., Jiang, Q., "High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy", Surface and Coatings Technology, Vol. 200, (2006), 5413-5418. https://doi.org/10.1016/j.surfcoat.2005.07.001
7.   Ambat, R., Zhou, W., "Electroless nickel-plating on AZ91D magnesium alloy: Effect of substrate microstructure and plating parameters", Surface and Coatings Technology, Vol. 179, (2004), 124-134. https://doi.org/10.1016/S0257-8972(03)00866-1
8.   Huang, C.A., Wang, T.H., Weirich, T., Neubert, V., "A pretreatment with galvanostatic etching for copper electrodeposition on pure magnesium and magnesium alloys in an alkaline copper-sulfate bath", Electrochimica Acta, Vol. 53, (2008), 7235-7241. https://doi.org/10.1016/j.electacta.2008.04.074
9.   Li, G.Y., Lian, J.S., Niu, L.Y., Jiang, Z.H., Jiang, Q., "Growth of zinc phosphate coatings on AZ91D magnesium alloy", Surface and Coatings Technology”, Vol. 201, (2006), 1814-1820. https://doi.org/10.1016/j.surfcoat.2006.03.006
10. Kelly, P.J., Arnell, R.D., "Magnetron sputtering: A review of recent developments and applications", Vacuum, Vol. 56, (2000), 159-172. https://doi.org/10.1016/S0042-207X(99)00189-X
11. Zhao, Q., Guo, X., Dang, X., Hao, J., Lai, J., Wang, K., "Preparation and properties of composite MAO/ECD coatings on magnesium alloy", Colloids and Surfaces B, Biointerfaces, Vol. 102, (2013), 321-326. https://doi.org/10.1016/j.colsurfb.2012.07.040
12. Lo, W.J., Grant, D.M., Ball, M.D., Welsh, B.S., Howdle, S.M., Antonov, E.N., Popov, V.K., "Physical, chemical, and biological characterization of pulsed laser deposited and plasma sputtered hydroxyapatite thin films on titanium alloy", BiomedicalMaterials Research, Vol. 50, (2000), 536-545. https://doi.org/10.1002/(SICI)1097-4636(20000615)50:4<536::AID-JBM9>3.0.CO;2-U
13. Ding, S.J., "Properties and immersion behavior of magnetron-sputtered multilayered hydroxyapatite/titanium composite coatings", Biomaterials, Vol. 24, (2003), 4233-4238. https://doi.org/10.1016/S0142-9612(03)00315-6
14. Lundin, D., Sarakinos, K., "An introduction to thin film processing using high-power impulse magnetron sputtering", MaterialsResearch, Vol. 27, (2012), 780-792. https://doi.org/10.1557/jmr.2012.8
15. Petrogalli, C., Montesano, L., Gelfi, M., La Vecchia, G.M., Solazzi, L., "Tribological and corrosion behavior of CrN coatings: Roles of substrate and deposition defects", Surface and Coatings Technology, Vol. 258, (2014), 878-885. https://doi.org/10.1016/j.surfcoat.2014.07.063
16. Firouzabadi, S.S., Dehghani, K., Naderi, M., Mahboubi, F., "Numerical investigation of sputtering power effect on nano-tribological properties of tantalum-nitride film using molecular dynamics simulation", Applied Surface Science, Vol. 367, (2016), 197-204. https://doi.org/10.1016/j.apsusc.2015.12.075
17. Gago, R., Vinnichenko, M., Hübner, R., Redondo Cubero, A., "Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition", Alloys and Compounds, Vol. 672, (2016), 529-535. https://doi.org/10.1016/j.jallcom.2016.02.194
18. Gao, H., Li, Y., Li, C., Ma, F., Song, Z., Xu, K., "Tuning the electronic properties in TaNx/Ag nanocomposite thin films", RSC Advances, Vol. 6, (2016), 30998-31004. https://doi.org/10.1039/C6RA02998A
19. Srinatha, N., No, Y.S., Kamble, V.B., Chakravarty, S., Suriyamurthy, N., Angadi, B., Umarji, A.M., Choi, W.K., "Effect of RF power on the structural optical and gas sensing properties of RF-sputtered Al doped ZnO thin films", RSC Advances, Vol. 6, (2016), 9779-9788. https://doi.org/10.1039/C5RA22795J
20. Zheng, D., Xiong, J., Guo, P., Wang, S., Gu, H., "AlN-based film buck acoustic resonator operated in shear mode for detection of carcinoembryonic antigens", RSC Advances, Vol. 6, (2016), 4908-4913. https://doi.org/10.1039/C5RA21900K
21. Maurya, D.K., Sardarinejad, A., Alameh, K., "Recent developments in RF magnetron sputtered thin films for pH sensing applications an overview", Coatings, Vol. 4, (2014), 756-771. https://doi.org/10.3390/coatings4040756
22. Surmenev, R.A., "A review of plasmaassisted methods for calcium phosphatebased coatings fabrication", Surface and Coatings Technology, Vol. 206, (2012), 2035-2056. https://doi.org/10.1016/j.surfcoat.2011.11.002
23. Sarakinos, K., Alami, J., Konstantinidis, S., "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art", Surface and Coatings Technology, Vol. 204, (2010), 1661-1684. https://doi.org/10.1016/j.surfcoat.2009.11.013
24. Gopi, D.,Murugan, N.,Ramya, S.,Shinyjoy, E.,Kavitha, L., "Ball flower like manganese, strontium substituted hydroxyapatite/cerium oxide dual coatings on AZ91 Mg alloy with improved bioactive and corrosion resistance properties for implant applications", RSC Advances, Vol. 5, (2015), 27402-27411. https://doi.org/10.1039/C5RA03432A
25. Lee, H.P., Lin, D.J., Yeh, M.L., "Phenolic modified ceramic coating on biodegradable Mg alloy: The improved corrosion resistance and osteoblast-like cell activity", Materials, Vol. 10, (2017), 696-710. https://doi.org/10.3390/ma10070696
26. Zeeshan, U.R., Uzair, M., Lim, H.T., Koo, B.H., "Structural and electrochemical properties of the catalytic CeO2 nanoparticles-based ceramic coatings on AZ91 Mg alloy", Journal of Alloys and Compounds, Vol. 17, (2017), 284-294. https://doi.org/10.1016/j.jallcom.2017.07.301
27. "Standard guide for preparation of metal surfaces for adhesive bonding", ASTM International, West Conshohocken, PA, D2651-01, (2001).
28. Freshney, R.I., Culture of animal cells: A manual of basic technique, John Wiley & Sons Inc., (2005).
29. Alishahi, M., Mahboubi, F., Mousavi, S.M., "Corrosion behavior of magnetron sputtered tantalum coating", New Process in Material Engineering, Vol. 12, (2018), 139-151.