نوع مقاله : مقاله کامل پژوهشی

نویسنده

دانشکده علوم پایه مهندسی، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

در این مطالعه، نیترید کربن گرافیتی (g-C3N4) از چگالش گرمایی ملامین در دو دمای 450 و 550 درجه سانتیگراد ساخته شد. همچنین، الکترود نانوساختارهای متخلخل دی اکسید تیتانیوم (TiO2 NP) به عنوان بستر برای لایه نشانی g-C3N4 با روش آندیزاسیون بر روی فویل تیتانیوم (Ti) ساخته شد و سپس برای بهبود رسانندگی الکتریکی به روش الکتروشیمیایی احیا گردید. لایه نیترید کربن گرافیتی به روش الکتروفورتیک بر روی الکترود نانوساختارهای متخلخل احیا شده (Re-TiO2 NP/Ti)  لایه نشانی گردید و الکترود نانوساختارهای متخلخل دی اکسید تیتانیوم احیا شده/نیترید کربن گرافیتی (g-C3N4/Re-TiO2 NP/Ti)  حاصل به عنوان الکترود ابرخازنی مورد استفاده قرار گرفت. مقایسه­ی خواص ابرخازنی الکترودهای (g-C3N4/Re-TiO2 NP/Ti) نشان داد که بازده الکتروشیمیایی و ظرفیت ویژه الکترود g-C3N4(450)/Re-TiO2 NP/Ti نسبت به الکترودg-C3N4(550)/Re-TiO2 NP/Ti بیشتر است که این پدیده، به دلیل مقادیر بالای نیتروژن و در نتیجه، افزایش سایت­های فعال، افزایش انتقال بار و آبدوستی در الکترود g-C3N4(450)/Re-TiO2 NP/Ti می­باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Supercapacitive properties of graphitic-carbon nitride deposited on reduced titanium dioxide porous nanostructured substrate

نویسنده [English]

  • Samira Yousefzadeh

Department of Physics, Faculty of Science, Sahand University of Technology, Tabriz, Iran

چکیده [English]

In this study, graphitic carbon nitride (g-C3N4) was made by thermal condensation of melamine at 450 and 550 °C. Moreover, the TiO2 porous nanostructured electrode was fabricated as a substrate for the g-C3N4 deposition by anodization method on a titanium foil (Ti) and then, reduced by electrochemical method to improve electrical conductivity (Re-TiO2 NP). The graphite carbon nitride layers were deposited on the porous nanostructured electrode (Re-TiO2 NP/Ti) by electrophoretic technique and the g-C3N4/Re-TiO2 NP/Ti electrodes were used as supercapacitor electrode. Comparison of the supercapacitive properties of the g-C3N4/Re-TiO2 NP/Ti electrodes showed that the electrochemical efficiency and specific capacitance of the g-C3N4 (450)/Re-TiO2 NP/Ti electrode is higher than the g-C3N4 (550)/Re-TiO2 NP/Ti electrode due to the increased active sites and charge transfer and the enhanced hydrophilicity as result of its high nitrogen content.

کلیدواژه‌ها [English]

  • Supercapacitor
  • Reduced TiO2 porous nanostructured electrode
  • graphitic-Carbon Nitride
  • Specific capacitance
  1. Bae, J., Song, M. K., Park, Y. J., Kim, J. M., Liu, M. and Wang, Z. L., Fiber supercapacitors made of nanowire‐fiber hybrid structures for wearable/flexible energy storage, Angewandte Chemie International Edition, 50 (2011) 1683-1687.
  2. Kotz, R. and Carlen, M., Principles and applications of electrochemical capacitors, Electrochimica. Acta, 45 (2000) 2483-2498.
  3. Miller, J. R. and Simon, P., Electrochemical capacitors for energy management, Science, 321 (2008) 651-652.
  4. Wang, Y., Song, Y. and Xia, Y., Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chemical Society Reviews, 45 (2016) 5925-5950.
  5. Zhao, Y., Xu, L., Huang, Sh., Bao, J., Qiu, J., Lian, J., Xu, L., Huang, Y., Xu, Y. and Li, H., Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors, Journal of Alloys and Compounds, 702 (2017) 178-185.
  6. Dong, B., Li, M., Chen, Sh., Ding, D., Wei, W., Gao, G. and Ding, Sh., Formation of g-C3N4@Ni(OH)2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density, ACS Applied Materials and Interfaces, 9 (2017) 17890-17896.
  7. Li, Q., Xu, D., Guo, J., Ou, X. and Yan, F., Protonated g-C3N4@polypyrrole derived N-doped porous carbon for supercapacitors and oxygen electrocatalysis, Carbon, 124 (2017) 599-610.
  8. Tahir, M., Cao, Ch., Mahmood, N., Butt, F. K., Mahmood, A., Idrees, F., Hussain, S., Tanveer, M., Ali, Z. and Aslam, I., Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties, ACS Applied Materials and Interfaces, 6 (2014) 1258-1265.
  9. Chang, X., Zhai, X., Sun, Sh., Gu, D., Dong, L., Yin, Y. and Zhu, Y., MnO2/g-C3N4 nanocomposite with highly enhanced supercapacitor performance, Nanotechnology, 28 (2017) 135705.
  10. Praus, P., Svoboda, L., Ritz, M., Troppova, I., Sihor, M. and Kocí, K., Graphitic carbon nitride: synthesis, characterization and photocatalytic decomposition of nitrous oxide, Materials Chemistry and Physics, 193 (2017) 438-446.
  11. Lu, L., Wang, G., Zou, M., Wang, J. and Li, J., Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme heterojunction photocatalyst, Applied Surface Science, 441 (2018) 1012-1023.
  12. Faraji, M., Three-dimensional nanostructures of multiwalled carbon nanotubes/graphene oxide/TiO2 nanotubes for supercapacitor applications, Applied Physics A, 122(2016) 697.
  13. Liu, J., Li, J., Dai, M., Hu, Y., Cui, J., Wang, Y., Tan, H. H. and Wu, Y., Photo-assisted synthesis of coaxial-structured polypyrrole/electrochemically hydrogenated TiO2 nanotube arrays as a high performance supercapacitor electrode, RSC Advances, 8 (2018) 13393-13400.
  14.  Kim, Ch., Kim, S., Hong, S. P., Lee, J. and Yoon, J., Effect of doping level of colored TiO2 nanotube arrays fabricated by electrochemical self-doping on electrochemical properties, Physical Chemistry Chemical Physics, 18 (2016) 14370-14375.
  15. Liu, N., Schneider, C., Freitag, D., Hartmann, M., Venkatesan, U., Muller, J., Spiecker, E. and Schmuki, P., Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation,Nano Letters, 14 (2014) 3309-3313.
  16. Kim, H. J., Kim, J. and Hong, B., Effect of hydrogen plasma treatment on nano-structured TiO2 films for the enhanced performance of dye-sensitized solar cell, Applied Surface Science, 274 (2013) 171-175.