نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مواد، دانشکده فنی-مهندسی، دانشگاه یاسوج، یاسوج، کهکیلویه و بویر احمد، ایران

2 فارغ التحصیل کارشناسی ارشد، گروه مهندسی مواد، دانشکده مهندسی مواد و عمران، دانشگاه شیراز، شیراز، فارس، ایران

چکیده

در این پژوهش، الیاف PZT با استفاده از پودر تجاری PZT-5A و افزودنی های پلیمری و حلال آب دیونیزه تهیه شد. رفتار رئولوژی خمیرهای مختلف با مقادیر جامد و افزودنی های متفاوت بررسی شد و بهترین خمیر برای تزریق توسط سرنگ ( فرایند اکستروژن) انتخاب شد. در این میان خمیر حاوی ۸۵٪ جامد و ۱٪ وزنی گلیسرول که با استفاده از محلول ۱۵٪ وزنی PVA تهیه شد دارای بهترین رفتار رئولوژی بود. الیاف به دست آمده در دمای ͦC۱۰۰ خشک شده و فرایند چسب زدائی در دمای ͦC۶۰۰ با نرخ ͦC/min۱ به مدت ۲ ساعت انجام گردید. فرایند تف جوشی در محدوده دمای ͦC۱۲7۰-۱۲2۰ در زمان های ۴-5/2 ساعت انجام شد. بررسی های فازی انجام شده توسط آنالیز پراش اشعه X نشان داد که الیاف به دست آمده در دمای ͦC۱۲۲۰ دارای ساختار تک فاز پروسکایت PZT می باشد، اما با افزایش دمای تف جوشی پیک های ثانویه مربوط به اکسیدهای زیرکونیوم و تیتانیوم در الگوهای پراش الیاف مشاهده شد. تصاویر میکروسکوپ الکترونی از سطح الیاف نشان داد الیاف تف جوشی شده در دمای ͦC۱۲۲۰ به مدت ۲ ساعت عاری از هرگونه ترک و دارای چگالی قابل قبول بود. بعلاوه، بر اساس تصاویر SEM میانگین قطر این نمونه حدود µm300 محاسبه شد. تصاویر سطح شکست الیاف نشان داد که این نمونه دارای ریزساختاری با دانه های مکعبی با میانگین اندازه دانه μm۵/۱ بود که حدود نصف میانگین دانه های PZT بالک با دانه های کروی در دمای بهینه تف جوشی بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the Effects of Sintering Variables on Microstructure and Density of PZT Fibers Fabricated via Extrusion Process

نویسندگان [English]

  • Raziye Hayati 1
  • Iman Fereydoonpoor 2
  • Reza Fadaei 2

1 Assistant Professor/PhD, Department of Materials Engineering, Yasouj University, Yasouj, Kohkilooye va boyer Ahmad, Iran

2 M.Sc, Department of Materials Engineering, University of Shiraz, Shiraz, Fars, Iran

چکیده [English]

: In this research, PZT fibers were fabricated using PZT-5A commercial powder, polymeric additives and deionized water as solvent. The rheological behavior of different pastes with various amounts of solids and additives was investigated and the best paste was selected for syringe injection (extrusion process). Meanwhile, the paste containing 85wt% solid content and 1wt% glycerol, which was prepared using a 15wt% PVA solution, showed the best rheological behavior. The obtained fibers were dried at 100°C and the burnout process was carried out at 600°C with heating rate of 1°C/min for 2 hours. The sintering process was carried out in the temperature range of 1220-1270 ͦC for 2.5-4 hours. The phase investigations conducted by X-ray diffraction analysis showed that the fibers sintered at 1220°C have a single-phase perovskite structure and peak splitting confirms the ferroelectric nature of fiber. However, at higher sintering temperature, secondary peaks related to zirconium and titanium oxides were observed in the fiber diffraction patterns. Scanning electron microscope (SEM) images from the surface of the fibers showed that the fibers sintered at 1220°C for 2 hours were free of any cracks and had an acceptable density. In addition, based on the SEM images from the fracture surface of the fibers, the microstructure of this sample consisted of cuboid grains with average size of 1.5 μm, which is half of the average grain size of bulk PZT with spherical grains at its optimum sintering temperature.

کلیدواژه‌ها [English]

  • Piezoelectric
  • Fiber
  • PZT
  • Sintering
  • Microstructure
[1] D. P. Landau, H. B. Schuttler, S. Lewis, M. Bachmann, and J. W. Bennett, Proceedings of the 25th Workshop on Computer Simulation Studies in Condensed Matter Physics Discovery and Design of Functional Materials: Integration of Database Searching and First Principles Calculations, Physics Procedia, vol. 34 (2012) 14-23,https://doi.org/10.1016/j.phpro.2012.05.003.
[2] W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, et al., "Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective", Journal of Electroceramics, vol. 29, (2012) 71-93, https://doi.org/10.1007/s10832-012-9742-3.
[3] J. Rödel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, "Transferring lead-free piezoelectric ceramics into application", Journal of the European Ceramic Society, vol. 35, (2015) 1659-1681, https://doi.org/10.1016/j.jeurceramsoc.2014.12.013.
[4] K. Uchino, Advanced piezoelectric materials, Woodhead Publishing Limited, Abington Hall, Granta Park, 2010, https://www.sciencedirect.com/book/9781845695347/advanced-piezoelectric-materials.
[5] Ozevin, D., "MEMS Acoustic Emission Sensors", Applied Sciences, 10(24) (2020) 8966, https: // doi.org/10.3390/app10248966.
[6] H. B. Strock et al., "Active PZT fibers, a commercial production process", Part of the SPIE Conference on Smart Materials Technologies, Newport Beach, California, 1999,https://doi.org/10.1117/12.352799.
[7] J. Qiu, J. Tani, Y. Kobayashi1, T. Young Um and H. Takahashi, "Fabrication of piezoelectric ceramic fibers by extrusion of Pb(Zr, Ti)O3 powder and Pb(Zr, Ti)O3 sol mixture", Smart Materias Structure 12, (2003) 331–337, https://doi.org/ 10.1088/0964-1726/12/3/303.
[8] O. Bink; e & R. Nass, "Synthesis and Characterization of PZT Fibers via Sol-Gel", Journal of Sol-Gel Science and Technology Vol. 13 (1998) 1023-1026, https://doi.org/10.1023/A:1008616516686.
[9] Richard Meyer Jr., Thomas Shrout, and Shoko Yoshikawa, "Lead Zirconate Titanate Fine Fibers Derived from Alkoxide-Based Sol–Gel Technology", Journal of American Ceramic Society, 81 (4), (1998) 861–68, https://doi.org/10.1111/j.11512916.1998.tb02420.x
[10] J Helbig, W Glaubitt, H Spaniol, P Vierhaus, U Lange, R Hansch, W Watzka and D Sporn, "Development and technology of doped sol–gel derived lead zirconate titanate fibers", Smart Materials Structure 12, (2003) 987–992, https://doi.org/10.1088/0964-1726/12/6/017.
[11] Kyung-Hoon Cho, Shashank Priya, "Synthesis of ferroelectric PZT fibers using sol–gel technique", Materials Letters 65, (2011) 775–779, https://doi.org/10.1016/j.matlet.2010.11.070.
[12] C. R. Bowen, R. Stevens, L. J. Nelson, A. C. Dent, G. Dolman, B. Su, T. W. Button, M. G. Cain and M. Stewart, "Manufacture and characterization of high activity piezoelectric fibres", Smart Materials Structures 15, (2006) 295–301, https://doi.org/ 10.1088/0964_1726/15/2/008.
[13] X. Kornmann, C. Huber, "Microstructure, and mechanical properties of PZT fibres", Journal of the European Ceramic Society 24, (2004) 1987–1991,https://doi.org/10.1016/S0955_2219(03)00364-9.
[14] Jonathan D. French, Gregory E. Weitz, John E. Luke and Richard B. Cass, Bahram Jadidian, Victor Janas and Ahmad Safari, Production of Continuous Piezoelectric Fibers for Sensor/Actuator Applications, IEEE, 1996, https://doi.org/10.1109/ISAF.1996.598163.
[15] Mynul Hossain, Amkee Kim, the effect of acetic acid on morphology of PZT nanofibers fabricated by electrospinning, Materials Letters 63 (2009)78979, https://doi.org/10.1016/j.matlet.2009.01.005.
[16] Y. Cung-Hao, L. Chia-Hsin, W. Yi-Hui Wang, Ch. Syh-Yuh, And Ch. Horng-Yi, Fabrication and Characterization of Flexible PZT Fiber and Composite, Ferroelectrics, 434, (2012) 91–99, https://doi.org/10.1080/00150193.2012.732513.
[17] F. Meister, D. Vorbach, F. Niemz, T. Schulze und E. Taeger, High-Tech-Cellulose-Funktionspolymere nach dem ALCERU-Verfahren, Materialwissenschaft und Werkstofftechnik, 34, (2003) 262-266, https://doi.org/10.1002/mawe.200390056.
[18] Juliane Heiber, Alberto Belloli, , Paolo Ermanni, and Frank Clemens, Ferroelectric Characterization of Single PZT Fibers, Journal of Intelligent Material Systems and Structures, 20(4), (2008), 379-385, https://doi.org/10.1177/1045389X08094365.
[19] 1-3 piezocomposite & transducers for ultrasound applications, 1-3 Composites Overview, Available at smart-material.com
[20] Horng-Yi Chang, Chung-Hao Yi , Chia-Hsin Lin , Syh-Yuh Cheng, Surface-condensed piezoelectric fibers and composites, Materials Chemistry & Physics, Volume 148 (3), (2014) 512-518, https://doi.org/10.1016/j.matchemphys.2014.05.019.
[21] Joseph R. Carazzone, Christophe L. Martin, Zachary C. Cordero, Crack initiation, propagation, and arrest in sintering powder aggregates, Journal of American Ceramic Society, 103(9), (2020) 4754–4773, https://doi.org/10.1111/jace.17170.
[1] D. P. Landau, H. B. Schuttler, S. Lewis, M. Bachmann, and J. W. Bennett, Proceedings of the 25th Workshop on Computer Simulation Studies in Condensed Matter Physics Discovery and Design of Functional Materials: Integration of Database Searching and First Principles Calculations, Physics Procedia, vol. 34 (2012) 14-23,https://doi.org/10.1016/j.phpro.2012.05.003.
[2] W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, et al., "Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective", Journal of Electroceramics, vol. 29, (2012) 71-93, https://doi.org/10.1007/s10832-012-9742-3.
[3] J. Rödel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, "Transferring lead-free piezoelectric ceramics into application", Journal of the European Ceramic Society, vol. 35, (2015) 1659-1681, https://doi.org/10.1016/j.jeurceramsoc.2014.12.013.
[4] K. Uchino, Advanced piezoelectric materials, Woodhead Publishing Limited, Abington Hall, Granta Park, 2010, https://www.sciencedirect.com/book/9781845695347/advanced-piezoelectric-materials.
[5] Ozevin, D., "MEMS Acoustic Emission Sensors", Applied Sciences, 10(24) (2020) 8966, https: // doi.org/10.3390/app10248966.
[6] H. B. Strock et al., "Active PZT fibers, a commercial production process", Part of the SPIE Conference on Smart Materials Technologies, Newport Beach, California, 1999,https://doi.org/10.1117/12.352799.
[7] J. Qiu, J. Tani, Y. Kobayashi1, T. Young Um and H. Takahashi, "Fabrication of piezoelectric ceramic fibers by extrusion of Pb(Zr, Ti)O3 powder and Pb(Zr, Ti)O3 sol mixture", Smart Materias Structure 12, (2003) 331–337, https://doi.org/ 10.1088/0964-1726/12/3/303.
[8] O. Bink; e & R. Nass, "Synthesis and Characterization of PZT Fibers via Sol-Gel", Journal of Sol-Gel Science and Technology Vol. 13 (1998) 1023-1026, https://doi.org/10.1023/A:1008616516686.
[9] Richard Meyer Jr., Thomas Shrout, and Shoko Yoshikawa, "Lead Zirconate Titanate Fine Fibers Derived from Alkoxide-Based Sol–Gel Technology", Journal of American Ceramic Society, 81 (4), (1998) 861–68, https://doi.org/10.1111/j.11512916.1998.tb02420.x
[10] J Helbig, W Glaubitt, H Spaniol, P Vierhaus, U Lange, R Hansch, W Watzka and D Sporn, "Development and technology of doped sol–gel derived lead zirconate titanate fibers", Smart Materials Structure 12, (2003) 987–992, https://doi.org/10.1088/0964-1726/12/6/017.
[11] Kyung-Hoon Cho, Shashank Priya, "Synthesis of ferroelectric PZT fibers using sol–gel technique", Materials Letters 65, (2011) 775–779, https://doi.org/10.1016/j.matlet.2010.11.070.
[12] C. R. Bowen, R. Stevens, L. J. Nelson, A. C. Dent, G. Dolman, B. Su, T. W. Button, M. G. Cain and M. Stewart, "Manufacture and characterization of high activity piezoelectric fibres", Smart Materials Structures 15, (2006) 295–301, https://doi.org/ 10.1088/0964_1726/15/2/008.
[13] X. Kornmann, C. Huber, "Microstructure, and mechanical properties of PZT fibres", Journal of the European Ceramic Society 24, (2004) 1987–1991,https://doi.org/10.1016/S0955_2219(03)00364-9.
[14] Jonathan D. French, Gregory E. Weitz, John E. Luke and Richard B. Cass, Bahram Jadidian, Victor Janas and Ahmad Safari, Production of Continuous Piezoelectric Fibers for Sensor/Actuator Applications, IEEE, 1996, https://doi.org/10.1109/ISAF.1996.598163.
[15] Mynul Hossain, Amkee Kim, the effect of acetic acid on morphology of PZT nanofibers fabricated by electrospinning, Materials Letters 63 (2009)78979, https://doi.org/10.1016/j.matlet.2009.01.005.
[16] Y. Cung-Hao, L. Chia-Hsin, W. Yi-Hui Wang, Ch. Syh-Yuh, And Ch. Horng-Yi, Fabrication and Characterization of Flexible PZT Fiber and Composite, Ferroelectrics, 434, (2012) 91–99, https://doi.org/10.1080/00150193.2012.732513.
[17] F. Meister, D. Vorbach, F. Niemz, T. Schulze und E. Taeger, High-Tech-Cellulose-Funktionspolymere nach dem ALCERU-Verfahren, Materialwissenschaft und Werkstofftechnik, 34, (2003) 262-266, https://doi.org/10.1002/mawe.200390056.
[18] Juliane Heiber, Alberto Belloli, , Paolo Ermanni, and Frank Clemens, Ferroelectric Characterization of Single PZT Fibers, Journal of Intelligent Material Systems and Structures, 20(4), (2008), 379-385, https://doi.org/10.1177/1045389X08094365.
[19] 1-3 piezocomposite & transducers for ultrasound applications, 1-3 Composites Overview, Available at smart-material.com
[20] Horng-Yi Chang, Chung-Hao Yi , Chia-Hsin Lin , Syh-Yuh Cheng, Surface-condensed piezoelectric fibers and composites, Materials Chemistry & Physics, Volume 148 (3), (2014) 512-518, https://doi.org/10.1016/j.matchemphys.2014.05.019.
[21] Joseph R. Carazzone, Christophe L. Martin, Zachary C. Cordero, Crack initiation, propagation, and arrest in sintering powder aggregates, Journal of American Ceramic Society, 103(9), (2020) 4754–4773, https://doi.org/10.1111/jace.17170.