نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی نانوفناوری، دانشکده برق و کامپیوتر، دانشگاه تبریز، تبریز، آذربایجان شرقی، ایران

2 دانشیار، گروه شیمی آلی و بیوشیمی، دانشکده شیمی، دانشگاه تبریز، تبریز، آذربایجان شرقی، ایران

3 مربی، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، تهران، ایران

4 دانشجوی دکتری، گروه شیمی آلی و بیوشیمی، دانشکده شیمی، دانشگاه تبریز، تبریز، آذربایجان شرقی، ایران

10.30501/jamt.2022.329382.1216

چکیده

هدف از این پژوهش، ساخت پوشش نانوکامپوزیتی منعطف چندجزیی و با کارآیی بالا جهت جذب امواج الکترومغناطیس است. نمونه­های نانوکامپوزیتی چندجزیی شامل: نانولوله­های کربنی، ساختار هسته-پوسته پلی­آنیلین-اکسید­آهن و نانوسیم­های نیکل، با درصدهای وزنی 2، 4 و 6 درصد در زمینه پلی­آکریلیک پایه آبی در ضخامت 2 میلی­متر تهیه شد و مشخصات ساختاری آن­ها، توسط میکروسکوپ الکترونی روبشی نشر میدانی بررسی شد. مقدار عایق­سازی پوشش­ها در برابر امواج الکترومغناطیس، توسط دستگاه تحلیلگر شبکه برداری در محدوده بسامدی 8-12 گیگاهرتز اندازه­گیری شد. نتایج نشان داد که با افزایش غلظت پرکننده­ها، شبکه متراکم رسانا از آن­ها در زمینه شکل می­گیرد که موجب برهم‌کنش بیشتر با امواج الکترومغناطیس شده و در نهایت جذب بیشتر می­شود. حضور هم‌زمانِ هر سه عامل تقویت‌کننده‌ جذب امواج شامل: نانولوله­های کربنی، پلی­آنیلین-اکسید آهن و نانوسیم­های نیکل به‌ترتیب با بهبود هدایت الکتریکی و مغناطیسی زمینه، میزان عایق­سازی مؤثر بزرگ‌تری را در مقایسه با حالت­های تک و یا دو­جزیی ارایه کردند. درنهایت، ارزیابی­ها مشخص نمود که نانوکامپوزیت متشکل از هر سه پرکننده با 6 درصد وزنی، با عایق­سازی مؤثر 22 دسیبل، ایده­آل­ترین عملکرد را در محدوده بسامدی X در مقایسه با سایر نانوکامپوزیت­ها دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Flexible Multicomponent Nanocomposite Cover for Efficient Absorption of Electromagnetic Waves

نویسندگان [English]

  • Ali Rashidi 1
  • Gholamreza Kiani 2
  • Ayub Karimzad Ghavidel 3
  • Mahsa Mahdavinia 4

1 M. Sc., Department of Nanotechnology Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, East Azerbaijan, Iran

2 Associate Professor, Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, East Azerbaijan, Iran

3 Lecturer, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Tehran, Iran

4 Ph. D. Student, Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, East Azerbaijan, Iran

چکیده [English]

The main objective of this research was to fabricate a flexible Multi-component Nanocomposite (MN) cover with high efficiency to absorb Electro-Magnetic Waves (EMW). For this purpose, nine MNs containing Carbon Nanotubes (CNTs), core-shell structure of Polyaniline-Fe3O4 (PANI), and Nickel Nanowires (NiNW) were prepared with different weight percentages of 2, 4, and 6 with the thickness of 2 mm within the waterborne polyacrylic. Then, their structural characteristics were investigated through Field-Emission Electron Microscopy (FE-SEM). The protection value of the covers against EMW were measured using a Vector Network Analyzer (VNA) machine at the frequency range of 8-12 GHz. The results revealed that followed by an increase in the concentration of the fillers, they formed a dense and conductive network within the matrix, thus leading to more interaction by EMW and eventually more absorption. The simultaneous presence of all three of EMW absorbtion enhancers including CNTs, PANI, and NiNW offered a more effective shielding than that in both single and double components by improving the matrix electrical and magnetic conductivity. Finally, the evaluations proved that the nanocomposite containing the mentioned three fillers with the wight percentage of  6 wt % and effective shielding of 22 dB exhibited the most ideal performance between other nanocomposites over the X-frequency range.

کلیدواژه‌ها [English]

  • Electromagnetic Wave Absorber
  • Multicomponent Nanocomposite
  • Polyaniline
  • Nickel Nanowires
  • Carbon Nanotubes
  1. Xue, B., Li, Y., Cheng, Z., Yang, Sh., Xie, L., Qin, Sh., Zheng, Q., "Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks", Nano-Micro Letters, Vol. 14, No. 1, (2022), 1-16. https://doi.org/10.1007/s40820-021-00743-y
  2. Zhang, N., Wang, Z., Song, R., Wang, Q., Chen, H., Zhang, B., Lv, H., Wu, Z., He, D., "Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness", Science Bulletin, Vol. 64, No. 8, (2019), 540-546. https://doi.org/10.1016/j.scib.2019.03.028
  3. Gu, J., Hu, Sh., Ji, H., Feng, H., Zhao, W., Wei, J., Li, M., "Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding", Nanotechnology, Vol. 31, No. 18, (2020), https://doi.org/10.1088/1361-6528/ab6d9d
  4. Zhu, X., Xu, J., Qin, F., Yan, Z., Guo, A., Kan, C., "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires", Nanoscale, Vol. 12, No. 27, (2020), 14589-14597. https://doi.org/10.1039/D0NR03790G
  5. Arjmand, M., Electromagnetic interference shielding and dielectric properties of multi-walled carbon nanotube/polymer composites, Doctroral dissertation, Department of Chemical and Petroleum Engineering, University of Calgary, (2014). Available at: http://hdl.handle.net/11023/1379
  6. Palanisamy, S., Tunakova, V., Hu, Sh., Yang, T., Kremenakova, D., Venkataraman, M., Petru, M., Militky, J., "Electromagnetic interference shielding of metal coated ultrathin nonwoven fabrics and their factorial design", Polymers, Vol. 13, No. 4, (2021), https://doi.org/10.3390/polym13040484
  7. Thomassin, J. M., Jerome, C., Pardoen, T., Bailly, C., Huynen, I., Detrembleur, C., "Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials", Materials Science and Engineerin, Vol. 74, No. 7, (2013), 211-232. https://doi.org/10.1016/j.mser.2013.06.001
  8. Arjmand, M., Apperley, T., Okoniewski, M., Sundararaj U., "Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites", Carbon, Vol. 50, No. 14, (2012), 5126-5134. https://doi.org/10.1016/j.carbon.2012.06.053
  9. Al-Saleh, M. H., Gelves, G. A., Sundararaj, U., "Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding", Composites Part A: Applied Science and Manufacturing, 42, No. 1, (2011), 92-97. https://doi.org/10.1016/j.compositesa.2010.10.003
  10. Chen, Y., Zhang, H. B., Wang, M., Qian, X., Dasari, A., Yu, Z. Z., "Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances", Composites Science and Technology, Vol. 152, (2017), 254-262. https://doi.org/10.1016/j.compscitech.2017.09.022
  11. Chung, D. D. L., Eddib, A. A., "Effect of fiber lay-up configuration on the electromagnetic interference shielding effectiveness of continuous carbon fiber polymer-matrix composite", Carbon, Vol. 141, (2019), 685-691. https://doi.org/10.1016/j.carbon.2018.09.081
  12. Mondal, S., Ravindren, R., Bhawal, P., Shin, B., Ganguly, S., Nah, C., Das, N., "Combination effect of carbon nanofiber and ketjen carbon black hybrid nanofillers on mechanical, electrical, and electromagnetic interference shielding properties of chlorinated polyethylene nanocomposites", Composites Part B: Engineering, Vol. 197, (2020), https://doi.org/10.1016/j.compositesb.2020.108071
  13. Zhang, D. Q., Liu, T. T., Shu, J. C., Liang, S., Wang, X., Cheng, J., Wang, H., Cao, S. M., "Self-assembly construction of WS2–rGO architecture with green EMI shielding", ACS Applied Materials & Interfaces, Vol. 11, No. 30, (2019), 26807-26816. https://doi.org/10.1021/acsami.9b06509
  14. Choi, H. Y., Lee, T. W., Lee, S. E., Lim, J. D., Jeong, Y. G., "Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements", Composites Science and Technology, Vol. 150, No. 1, (2017), 45-53. https://doi.org/10.1016/j.compscitech.2017.07.008
  15. Shayesteh Zeraati, A., Mende Anjaneyalu, A., Pawar, S. P., Abouelmagd, A., Sundararaj, U., "Effect of secondary filler properties and geometry on the electrical, dielectric, and electromagnetic interference shielding properties of carbon nanotubes/polyvinylidene fluoride nanocomposites", Polymer Engineering & Science, Vol. 61, No. 4, (2021), 959-970. https://doi.org/10.1002/pen.25591
  16. Liu, Y., Song, D., Wu, C., Leng, J., "EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe", Composites Part B: Engineering, Vol. 63, (2014), 34-40. https://doi.org/10.1016/j.compositesb.2014.03.014
  17. Duan, H., Xu, Y., Yan, D. X., Yang, Y., Zhao, G., Liu, Y., "Ultrahigh molecular weight polyethylene composites with segregated nickel conductive network for highly efficient electromagnetic interference shielding", Materials Letters, Vol. 209, (2017), 353-356. https://doi.org/10.1016/j.matlet.2017.08.053
  18. Al-Saleh, M. H., Saadeh, W. H., Sundararaj, U., "EMI shielding effectiveness of carbon based nanostructured polymeric", Carbon, Vol. 60, (2013), 146-156. https://doi.org/10.1016/j.carbon.2013.04.008
  19. Li, Y., Chen, C., Zhang, S., Ni, Y., Huang, J., "Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films", Applied Surface Science, Vol. 254, No. 18, (2008), 5766-5771. https://doi.org/10.1016/j.apsusc.2008.03.077
  20. Fang F., Li, Y. Q., Xiao, H. M., Hu, N., Fu, S. Y., "Layer-structured silver nanowire/polyaniline composite film as a high performance x-band EMI shielding material", Journal of Materials Chemistry C, Vol. 4, No. 19, (2016), 4193-4203. https://doi.org/10.1039/C5TC04406E
  21. Movassagh-Alanagh, F., Bordbar-Khiabani, A., Ahangari-Asl, A., "Three-phase PANI@Nano-Fe3O4@CFs heterostructure: fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@Nano-Fe3O4@CFs/epoxy hybrid composite", Composites Science and Technology, Vol. 150, (2017), 65-78. https://doi.org/10.1016/j.compscitech.2017.07.010
  22. Shahzad, F., Lee, S. H., Hong, S. M., Koo, C. M., "Segregated reduced graphene oxide polymer composite as a high performance electromagnetic interference shield", Research on Chemical Intermediates, Vol. 44, No. 8, (2018), 4707-4719. https://doi.org/10.1007/s11164-018-3274-7
  23. Yu, W. C., Wang, T, Liu, Y. H., Wang, Z. G., Xu, L., Tang, H. J., Dai, K., Duan, H., "Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core", Chemical Engineering Journal, Vol. 393, (2020), https://doi.org/10.1016/j.cej.2020.124644
  24. Han, X., Gai, L., Jiang, H., Zhao, L., Liu, H., Zhang, W., "Core–shell structured Fe3O4/PANI microspheres and their Cr (VI) ion removal properties", Synthetic Metals, Vol. 171, (2013), 1-16. https://doi.org/10.1016/j.synthmet.2013.02.025
  25. Olad, A., Nosrati, R., "Preparation and corrosion resistance of nanostructured PVC/ZnO–polyaniline hybrid coating", Progress in Organic Coatings, Vol. 76, No. 1, (2013), 113-118. https://doi.org/10.1016/j.porgcoat.2012.08.017
  26. Kong, Y. Y., Pang, S. C. Chin, S. F., "Facile synthesis of nickel nanowires with controllable morphology", Materials Letters, Vol. 142, (2015), 1-3. https://doi.org/10.1016/j.matlet.2014.11.140
  27. Nasiri, A., Shariaty-Niasar, M., Rashidi, A., Amrollahi, A., Khodafarin, R., "Effect of dispersion method on thermal conductivity and stability of nanofluid", Experimental Thermal and Fluid Science, Vol. 35, No. 4, (2011), 717-723. https://doi.org/10.1016/j.expthermflusci.2011.01.006
  28. Zadehnajar, P., Karbasi, S., Akbari, B., Mirmusavi, M. H., "Evaluation of physical and mechanical properties of electrospinning nanocomposite scaffolds poly ɛ-caprolactone-gelatin/multi walled carbon nanotube", Journal of Advanced Materials and Technologies (JAMT), Vol. 7, No. 4, (2019), 93-100. https://doi.org/10.30501/jamt.2019.84403
  29. Blacksmith, P., Hiatt, R., Mack, R., "Introduction to radar cross-section measurements", Proceedings of the IEEE, Vol. 53, No. 8, (1965), 901-920. https://doi.org/10.1109/PROC.1965.4069
  30. Al-Saleh, M. H., "Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites", Synthetic Metals, Vol. 205, (2015), 78-84. https://doi.org/10.1016/j.synthmet.2015.03.032
  31. Al-Saleh, M. H., Sundararaj, U., "Electromagnetic interference shielding mechanisms of CNT/polymer composites", Carbon, Vol. 47, No. 7, (2009), 1738-1746. https://doi.org/10.1016/j.carbon.2009.02.030
  32. Ghorbani, M., Fazli, S., Soleimani Lashkenari, M., "Fabrication of PMMA/PANI/Fe3O4 as a novel conducting hybrid coating", Polymer-Plastics Technology and Engineering, Vol. 57, No. 6, (2018), 591-599. https://doi.org/10.1080/03602559.2017.1332205
  33. Fathinejad, J. H., Javidfar, M. R, "Study on effect of aluminium nitrate on conductivity properties of hydrogel nanocomposite based on acrylic acid/CNTs", Journal of Advanced Materials and Technologies(JAMT), Vol. 7, No. 2, (2018), 57-61. https://doi.org/10.30501/jamt.2018.91467
  34. Nguyen, K., Hoa, N. D., Hung, C. M., Le, D. T. T., Duy, N. V., Van Hieu, N., "A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method", RSC Advances, Vol. 8, No. 35, (2018), 19449-19455. https://doi.org/10.1039/C8RA02862A
  35. Jang, M. G., Ryu, S. C., Juhn, K. J., Kim, S. K., Kim, W. N., "Effects of carbon fiber modification with multiwall CNT on the electrical conductivity and EMI shielding effectiveness of polycarbonate/carbon fiber/CNT composites", Journal of Applied Polymer Science, Vol. 136, No. 14, (2019), https://doi.org/10.1002/app.47302
  36. Kim, Y. H., Park, S. J., "Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes", Current Applied Physics, Vol. 11, No. 3, (2011), 462-466. https://doi.org/10.1016/j.cap.2010.08.018
  37. Dalton, C., Rapid determination of parasite viability using AC electrokinetic techniques, Doctoral dissertation, University of Wales, Bangor, (2002). Available at: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396031
  38. Dielectric spectroscopy”, Wikipedia, Available at: http://en.wikipedia.org/wiki/Dielectric_spectroscopy
  39. Xing, Z. H., Wang, S. S., Xu, A. W., "Dipole-directed assembly of Fe3O4 nanoparticles into nanorings via oriented attachment", CrystEngComm, Vol. 16, No. 8, (2014), 1482-1487. https://doi.org/10.1039/C3CE41690A
  40. Wang, J., Zhang, L. Y., Liu, P., Lan, T. M., Zhang, J., Wei, L. M., Zhang, Y. F., "Preparation and growth mechanism of nickel nanowires under applied magnetic field", Nano-Micro Letters, Vol. 2, No. 2, (2010), 134-138. https://doi.org/10.1007/BF03353631
  41. Li, Y., Zhong, Y., Zhang, J., Xu, L., Wang, Q., Sun, H., Tong, H., Cheng, X., Miao., X., "Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems", Scientific Reports, Vol. 4, No. 1, (2014), 1-7. https://doi.org/10.1038/srep04906
  42. Talebi, H., Olad, A., Nosrati, R., "Fe3O4/PANI nanocomposite core-shell structure in epoxy resin matrix for the application as electromagnetic waves absorber", Progress in Organic Coatings, Vol. 163, (2022), https://doi.org/10.1016/j.porgcoat.2021.106665
  43. Ali, N. N., Atassi, Y., Salloum, A., Charba, A., Charba, A., Malki, A., Jafarian, M., "Comparative study of microwave absorption characteristics of (polyaniline/NiZn ferrite) nanocomposites with different ferrite percentages", Materials Chemistry and Physics, Vol. 211, No. 1, (2018), 79-87. https://doi.org/10.1016/j.matchemphys.2018.02.017
  44. Sushmita, K., Madras, G., Bose, S., "Polymer nanocomposites containing semiconductors as advanced materials for EMI shielding", ACS Omega, Vol. 5, No. 10, (2020), 4705-4718. https://doi.org/10.1021/acsomega.9b03641
  45. Ahmad, H. S., Hussain, T., Nawab, Y., Salamat, S., "Effect of dielectric and magnetic nanofillers on electromagnetic interference shielding effectiveness of carbon/epoxy composites", Journal of Composite Materials, Vol. 56, No. 1, (2022), 69-82. https://doi.org/10.1177/00219983211052615
  46. Zhang, D., Yang, X., Cheng, J., Lu, M., Zhao, B., Cao, M., "Facile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4/PANI nanocomposites", Journal of Nanomaterials, Vol. 2013, No. 134, (2013), 1425. https://doi.org/10.1155/2013/591893
  47. Wanasinghe, D., Aslani, F., Ma, G., Habibi, D., "Review of polymer composites with diverse nanofillers for electromagnetic interference shielding", Nanomaterials, Vol. 10, No. 3, (2020), 541. https://doi.org/10.3390/nano10030541
  48. Zhang, F., Jia, Z., Wang, Z., Zhang, C., Wang, B., Xu, B., Liu, X., Wu, G., "Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber", Materials Today Physics, Vol. 20, (2021), https://doi.org/10.1016/j.mtphys.2021.100475