نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه بیومواد، پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، ایران

2 استاد، گروه بیومواد، پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، ایران

چکیده

گلیسیدوکسی پروپیل تری‌متوکسی سیلان (GPTMS)، افزون بر بهبود عملکرد زیست‌فعالی و سلولی داربست‌ها، به افزایش پایداری و استحکام هیدروژل‌ها در کاربردهای استخوانی منجر می‌شود. درصد عامل شبکه‌ای‌کننده افزوده‌شده یکی از عوامل مؤثر در خواص داربست است. به همین دلیل، در این مطالعه، داربست‌های کیتوسان و ژلاتین با درصدهای وزنی گوناگون GPTMS به روش خشکاندن انجمادی آماده و ارزیابی شدند. نتایج میکروسکوپ الکترونی روبشی (SEM) نشانگر دستیابی به داربست‌های متخلخل است که اندازه تخلخل‌ها، با افزایش مقدار عامل شبکه‌ای‌کننده، به حدود 290 میکرون رسیدند. نتایج طیف‌سنجی مادون قرمز تبدیل فوریه نشان داد که پلیمر‌ها و فرایند شبکه‌ای‌شدن با تشکیل گروه‌های سیلانه برهم‌کنش دارند. همچنین، زاویه تماس با افزایش مقدار عامل شبکه‌ای‌کننده کاهش یافت و نمونه دارای 75 درصد وزنی GPTMS دارای زاویه تماس مطلوب 5/3 ± 7/60 درجه بود و درصد تورم و تخریب کاهش یافت. بااین‌حال، خواص مکانیکی با افزودن GPTMS تا 267 ± 1590 کیلوپاسکال افزایش یافت. همچنین، GPTMS به افزایش خواص زیست‌فعالی و رسوب لایه هیدروکسی آپاتیت منجر شد که الگوی تفرق پرتو ایکس نیز این ادعا را تأیید می‌کند. به نظر می‌رسد که داربست ژلاتین – کیتوسان، با 75 درصد وزنی GPTMS، بهترین نمونه برای استفاده در مهندسی بافت استخوان است.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Adding Different Percentages of γ-Glycidoxypropyltrimethoxysilane Cross-linker on the Properties of Freeze-dried Gelatin/Chitosan Scaffolds upon Introducing an Optimum Condition to Cross-link the Chitosan/Gelatin Scaffolds in Bone Tissue Engineering

نویسندگان [English]

  • Fatemeh Banafatizadeh 1
  • Ali Zamanian 2

1 Ph. D. Candidate, Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran

2 Professor, Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran

چکیده [English]

Use of γ-glycidoxypropyltrimethoxysilane (GPTMS) enhances the stability and strength of hydrogels and improves the bioactivity and cellular performance of the scaffolds in bone applications. Given that one of the leading factors that affects the properties of the scaffold is the percentage of the cross-linking agent, chitosan and gelatin scaffolds with different percentages of GPTMS were prepared and evaluated through freeze-drying method. The results from Scanning Electron Microscope (SEM) confirmed the achievement of porous scaffolds with open pores and upon increasing the amount of cross-linking agent, the size of the pores reached approximately 290 microns. The results of the infrared spectrum showed the interaction among the polymers and process of cross-linking with the formation of silane groups. In this study, upon increasing the amount of the transverse bonding agent, the contact angle decreased, the optimal contact angle of the sample with 75 (weight percent) GPTMS reached 60.7 ± 3.5 degrees, and the percentages of both swelling and degradation ultimately decreased. It should be noted that the mechanical properties were improved by adding GPTMS up to 1590 ± 267 kPa. According to the findings of this study, application of GPTMS led to an enhancement in the bioactivity properties and deposition of the hydroxyapatite layer, and the X-ray diffraction pattern confirmed this claim. The obtained results support the hypothesis that gelatin-chitosan scaffolds with 75 (wt %) GPTMS seem to be the best samples for use in bone tissue engineering.

کلیدواژه‌ها [English]

  • Gelatin
  • Chitosan
  • Cross-linker
  • Bone Tissue Engineering
  1. Zhang, Y., Liu, X., Zeng, L., Zhang, J., Zuo, J., Zou, J., Ding, J., Chen, X., "Polymer fiber scaffolds for bone and cartilage tissue engineering", Advanced Functional Materials, Vol. 29, No. 36, (2019), 1-20. https://doi.org/10.1002/adfm.201903279
  2. Kim, H. D., Hong, X., An, Y. H., Park, M. J., Kim, D. G., Greene, A. K., Padwa, B. L., Hwang, N. S., Lin, R. Z., Melero-Martin, J. M., "A biphasic osteovascular biomimetic scaffold for rapid and self-sustained endochondral ossification", Advanced Healthcare Materials, Vol. 10, No. 13, (2021), 2100070. https://doi.org/10.1002/adhm.202100070
  3. Tang, G., Tan, Z., Zeng, W., Wang, X., Shi, C., Liu, Y., He, H., Ceng, R., Ye, X., "Recent advances of chitosan-based injectable hydrogels for bone and dental tissue regeneration", Frontiers in Bioengineering and Biotechnology, Vol. 8, (2020), 1-15. https://doi.org/10.3389/fbioe.2020.587658
  4. Doozandeh, Z., Saber-Samandari, S., Khandan, A., "Preparation of novel Arabic gum-C6H9NO biopolymer as a bedsore for wound care application", Acta Medica Iranica, (2020), 520-530. https://doi.org/10.18502/acta.v58i10.4915
  5. Ghorbani, F., Sahranavard, M., Mousavi Nejad, Z., Li, D., Zamanian, A., Yu, B., "Surface functionalization of three dimensional-printed polycaprolactone-bioactive glass scaffolds by grafting GelMA under UV irradiation", Frontiers in Materials, Vol. 7, (2020), 1-17. https://doi.org/10.3389/fmats.2020.528590
  6. Maji, K., Dasgupta, S., "Characterization and in vitro evaluation of gelatin-chitosan scaffold reinforced with bioceramic nanoparticles for bone tissue engineering", Journal of Materials Research, Vol. 34, (2019), 2807-2818. https://doi.org/10.1557/jmr.2019.170
  7. Sahranavard, M., Zamanian, A., Ghorbani, F., Shahrezaee, M. H., "A critical review on three dimensional-printed chitosan hydrogels for development of tissue engineering", Bioprinting, Vol. 17, (2020), e00063. https://doi.org/10.1016/j.bprint.2019.e00063
  8. Aghabarari, B., "Biodiesel production using hybrid amino functionalized chitosan-carbon support as green catalyst", Journal of Renewable Energy and Environment (JREE), Vol. 3, (2016), 57-62. https://doi.org/10.30501/jree.2016.70085
  9. Karimi, M., Asefnejad, A., Aflaki, D., Surendar, A., Baharifar, H., Saber-Samandari, S., Khandan, A., Khan, A., Toghraie, D., "Fabrication of shapeless scaffolds reinforced with baghdadite-magnetite nanoparticles using a 3D printer and freeze-drying technique", Journal of Materials Research and Technology, Vol. 14, (2021), 3070-3079. https://doi.org/10.1016/j.jmrt.2021.08.084
  10. Parin, F. N., Terzioğlu, P., Sicak, Y., Yildirim, K., Öztürk, M., "Pine honey–loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties", The Journal of The Textile Institute, Vol. 112, No. 4, (2021), 628-635. https://doi.org/10.1080/00405000.2020.1773199
  11. Orshesh, Z., Hesaraki, S., Khanlarkhani, A., "Investigation of macroporous calcium phosphate cement obtained by foamed gelatin polymer", Advanced Ceramics Progress (ACERP), Vol. 2, (2017), 18-24. https://doi.org/10.30501/ACP.2016.70032
  12. Zhou, Z., Chen, J., Peng, C., Huang, T., Zhou, H., Ou, B., Chen, J., Liu, Q., He, S., Cao, D., Huang, H., Xiang, L., "Fabrication and physical properties of gelatin/sodium alginate/hyaluronic acid composite wound dressing hydrogel", Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 51, No. (2014), 318-325. http://dx.doi.org/10.1080/10601325.2014.882693
  13. Öfkeli, F., Demir, D., Bölgen, N., "Biomimetic mineralization of chitosan/gelatin cryogels and in vivo biocompatibility assessments for bone tissue engineering", Journal of Applied Polymer Science, Vol. 138, (2021), 1-12. https://doi.org/10.1002/app.50337
  14. EzEldeen, M., Loos, J., Mousavi Nejad, Z., Cristaldi, M., Murgia, D., Braem, A., Jacobs, R., "A. Materials, O. Sciences, 3d-printing-assisted fabrication of chitosan scaffolds from different sources and cross-linkers for dental tissue engineering", European Cells and Materials, Vol. 40, (2021), 485-501. https://doi.org/10.22203/eCM.v041a31
  15. Liu, Y. L., Su, Y. H., Lai, J. Y., "In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent", Polymer, Vol. 45, (2004), 6831-6837. https://doi.org/10.1016/j.polymer.2004.08.006
  16. Tonda-Turo, C., Gentile, P., Saracino, S., Chiono, V., Nandagiri, V. K., Muzio, G., Canuto, R. A., Ciardelli, G., "Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent", International Journal of Biological Macromolecules, Vol. 49, Vo. 4, (2011), 700-706. https://doi.org/10.1016/j.ijbiomac.2011.07.002
  17. Hong, J., Jung, D., Park, S., Oh, Y., Oh, K. K., Lee, S. H., "Immobilization of laccase via cross-linked enzyme aggregates prepared using genipin as a natural cross-linker", International Journal of Biological Macromolecules, Vol. 169, (2021), 541-550. https://doi.org/10.1016/j.ijbiomac.2020.12.136
  18. Aidun, A., Zamanian, A., Ghorbani, F., "Novel bioactive porous starch–siloxane matrix for bone regeneration: Physicochemical, mechanical, and in vitro properties", Biotechnology and Applied Biochemistry, Vol. 66, (2019), 43-52. https://doi.org/10.1002/bab.1694
  19. Sohrabi, M., Eftekhari Yekta, B., Rezaie, H., Naimi-Jamal, M. R., Kumar, A., Cochis, A., Miola, M., Rimondini, L., "Enhancing mechanical properties and biological performances of injectable bioactive glass by gelatin and chitosan for bone small defect repair", Biomedicines, Vol. 8, No. 12, (2020), 1-19. https://doi.org/10.3390/biomedicines8120616
  20. Shirosaki, Y., Tsuru, K., Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D., Costa, M. A., Fernandes, M. H., "Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration", Acta Biomaterialia, Vol. 5, No. 1, (2009), 346-355. https://doi.org/10.1016/j.actbio.2008.07.022
  21. Moreira, T. F. M., de Oliveira, A., da Silva, T. B. V., Dos Santos, A. R., Gonçalves, O. H., da Silva Gonzalez, R., Droval, A. A., Leimann, F. V., "Hydrogels based on gelatin: Effect of lactic and acetic acids on microstructural modifications, water absorption mechanisms and antibacterial activity", LWT-Food Science and Technology, Vol. 103, (2019), 69- https://doi.org/10.1016/j.lwt.2018.12.040
  22. Lee, J. B., Ko, Y. G., Cho, D., Park, W. H., Kwon, O. H., "Modification and optimization of electrospun gelatin sheets by electronbeam irradiation for soft tissue engineering", Biomaterials Research, Vol. 21, No. 1, (2017), 1- https://doi.org/10.1186/s40824-017-0100-z
  23. Dhawan, A., Kennedy, P. M., Rizk, E. B., Ozbolat, I. T., "Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery", Journal of the American Academy of Orthopaedic Surgeons, Vol. 27, No. 5, (2019), E215-E226. https://doi.org/10.5435/JAAOS-D-17-00632
  24. Imtiaz, N., Niazi, M. B. K., Fasim, F., Khan, B. A., Bano, S. A., Shah, G. M., Badshah, M., Menna, F., Uzair, B., "Fabrication of an original transparent PVA/gelatin hydrogel: In vitro antimicrobial activity against skin pathogens", International Journal of Polymer Science, (2019). https://doi.org/10.1155/2019/7651810
  25. Milad, F., Mirzaei, E., "Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior", Nanomedicine Research Journal, Vol. 5, (2018), 77-89. https://doi.org/10.22038/nmj.2018.005.004
  26. Yang, S., Han, X., Jia, Y., Zhang, H., Tang, T., "Hydroxypropyltrimethyl ammonium chloride chitosan functionalized-PLGA electrospun fibrous membranes as antibacterialwound dressing: In vitro and in vivo evaluation", Polymers, Vol. 9, No. 3, (2017), 1-19. https://doi.org/10.3390/polym9120697
  27. Mohamed, N., "Synthesis of hybrid chitosan silver nanoparticles loaded with doxorubicin with promising anti-cancer activity", Bionanoscience, Vol. 10, (2020), 758-765. https://doi.org/10.1007/s12668-020-00760-y
  28. Aljohani, W., Ullah, M. W., Li, W., Shi, L., Zhang, X., Yang, G., "Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system", Journal of Polymer Research, Vol. 25, No. 3, (2018). https://doi.org/10.1007/s10965-018-1455-0
  29. Song, J., Yoon, B., Kim, H., Kim, H., "Bioactive and degradable hybridized nanofibers of gelatin–siloxane for bone regeneration", Journal of Biomedical Materials Research-Part A, Vol. 84, No. 4, (2008), 875-884. https://doi.org/10.1002/jbm.a.31330
  30. Tonda-Turo, C., Cipriani, E., Gnavi, S., Chiono, V., Mattu, C., Gentile, P., Perroteau, I., Zanetti, M., Ciardelli, G., "Crosslinked gelatin nanofibres: Preparation, characterisation and in vitro studies using glial-like cells", Materials Science and Engineering C, Vol. 33, No. 5, (2013), 2723-2735. https://doi.org/10.1016/j.msec.2013.02.039
  31. Ghorbani, F., Zamanian, A., Behnamghader, A., Daliri Joupari, M., "A novel pathway for in situ synthesis of modified gelatin microspheres by silane coupling agents as a bioactive platform", Journal of Applied Polymer Science, Vol. 135, No. 41, (2018), 1-10. https://doi.org/10.1002/app.46739
  32. Liu, J., Wang, S., Xu, K., Fan, Z., Wang, P., Xu, Z., Ren, X., Hu, S., Gao, Z., "Fabrication of double crosslinked chitosan/gelatin membranes with Na+ and pH dual-responsive controlled permeability", Polymer, Vol. 236, (2020). https://doi.org/10.1016/j.carbpol.2020.115963
  33. Ghorbani, F., Zamanian, A., Aidun, A., "Conductive electrospun polyurethane-polyaniline scaffolds coated with poly(vinyl alcohol)-GPTMS under oxygen plasma surface modification", Materials Today Communications, Vol. 22, (2020), 100752. https://doi.org/10.1016/j.mtcomm.2019.100752
  34. Nouri-Felekori, M., Khakbiz, M., Nezafati, N., Mohammadi, J., Eslaminejad, M. B., "Comparative analysis and properties evaluation of gelatin microspheres crosslinked with glutaraldehyde and 3-glycidoxypropyltrimethoxysilane as drug delivery systems for the antibiotic vancomycin", International Journal of Pharmaceutics, Vol. 557, (2019), 208-220. https://doi.org/10.1016/j.ijpharm.2018.12.054
  35. Liber-Kneć, A., Łagan, S., "Energy, surface testing of dental biomaterials—Determination of contact angle and surface free energy", Materials, Vol. 14, No. 11, (2021). https://doi.org/10.3390/ma14112716
  36. Koc, F. E., Altıncekic, T. G., "Investigation of gelatin/chitosan as potential biodegradable polymer films on swelling behavior and methylene blue release kinetics", Polymer Bulletin, (2020). https://doi.org/10.1007/s00289-020-03280-7
  37. Badawy, M. E., Taktak, N. E., Awad, O. M., Elfiki, S. A., El-Ela, N. E. A., "Preparation and characterization of biopolymers chitosan/alginate/gelatin gel spheres crosslinked by glutaraldehyde", Journal of Macromolecular Science, Part B, Vol. 56, No. 6, (2017), 359-372. https://doi.org/10.1080/00222348.2017.1316640
  38. Yang, G., Xiao, Z., Long, H., Ma, K., Zhang, J., Ren, X., Zhang, J., "Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods", Scientific Reports, Vol. 8, (2018), 1-13. https://doi.org/10.1038/s41598-018-20006-y
  39. Sadeghinia, A., Soltani, S., Aghazadeh, M., Khalilifard, J., Davaran, S., "Design and fabrication of clinoptilolite–nanohydroxyapatite/chitosan–gelatin composite scaffold and evaluation of its effects on bone tissue engineering", Journal of Biomedical Materials Research-Part A, Vol. 108, No. 2, (2020), 221-233. https://doi.org/10.1002/jbm.a.36806
  40. Nie, L., Wu, Q., Long, H., Hu, K., Li, P., Wang, C., Sun, M., Dong, J., Wei, X., Suo, J., Hua, D., Liu, S., Yuan, H., Yang, S., "Development of chitosan/gelatin hydrogels incorporation of biphasic calcium phosphate nanoparticles for bone tissue engineering", Journal of Biomaterials Science, Polymer Edition, Vol. 30, No. 17, (2019), 1636-1657. https://doi.org/10.1080/09205063.2019.1654210
  41. Rezaei, H., Asefnejad, A., Joupari, M. D., Joughehdoust, S., "The physicochemical and mechanical investigation of siloxane modified gelatin/sodium alginate injectable hydrogels loaded by ascorbic acid and β-Glycerophosphate", Materials Today Communications, Vol. 26, (2020), 101914. https://doi.org/10.1016/j.mtcomm.2020.101914
  42. Adekogbe, I., Ghanem, A., "Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering", Biomaterials, Vol. 26, (2005), 7241-7250. https://doi.org/10.1016/j.biomaterials.2005.05.043
  43. Peter, M., Ganesh, N., Selvamurugan, N., Nair, S. V., Furuike, T., Tamura, H., Jayakumar, R., "Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications", Carbohydrate Polymer, Vol. 80, No. 3, (2010), 687-694. https://doi.org/10.1016/j.carbpol.2009.11.050
  44. Alizadeh, M., Abbasi, F., Khoshfetrat, A. B., Ghaleh, H., "Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method", Materials Science and Engineering: C, Vol. 33, No. 7, (2013), 3958-3967. https://doi.org/10.1016/j.msec.2013.05.039
  45. Feroz, S., Dias, G., "Hydroxypropylmethyl cellulose (HPMC) crosslinked keratin/hydroxyapatite (HA) scaffold fabrication, characterization and in vitro biocompatibility assessment as a bone graft for alveolar bone regeneration", Heliyon, Vol. 7, No. 11, (2021), e08294. https://doi.org/10.1016/j.heliyon.2021.e08294
  46. Arabi, N., Zamanian, A., Rashvand, S. N., Ghorbani, F., "The tunable porous structure of gelatin-bioglass nanocomposite scaffolds for bone tissue engineering applications: Physicochemical, mechanical, and in-vitro properties", Macromolecular Materials and Engineering, Vol. 303, No. 3, (2018), 1700539. https://doi.org/10.1002/mame.201700539
  47. Martins, A. M., Santos, M. I., Azevedo, H. S., Malafaya, P. B., Reis, R. L., "Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications", Acta Biomaterialia, Vol. 4, No. 6, (2008), 1637-1645. https://doi.org/10.1016/j.actbio.2008.06.004
  48. Madhumathi, K., Binulal, N. S., Nagahama, H., Tamura, H., Shalumon, K. T., Selvamurugan, N., Nair, S. V., Jayakumar, R., Canuto, R. A., Ciardell, G., "Preparation and characterization of novel β-chitin-hydroxyapatite composite membranes for tissue engineering applications", International Journal of Biological Macromolecules, Vol. 44, No. 1, (2009), 1-5. https://doi.org/10.1016/j.ijbiomac.2008.09.013
  49. Rasti, M., Hesaraki, S., Nezafati, N., "Effects of GPTMS concentration and powder to liquid ratio on the flowability and biodegradation behaviors of 45S5 bioglass/tragacanth bioactive composite pastes", Journal of Applied Polymer Science, Vol. 136, No. 22, (2019), 17-22. https://doi.org/10.1002/app.47604
  50. Mirhaj, M., Mahmoodi, M., Mirafzali, S. A., Alizadeh, M., Tavakoli, M., "Enhanced biomineralization of stem cells and adsorption of extracellular matrix proteins on bioactive scaffold reinforced with carboxylated multi-walled carbon nanotubes", Journal of Advanced Materials and Technologies (JAMT), Vol. 10, No. 4, (2022), 89-106. https://doi.org/10.30501/jamt.2021.278619.1164
  51. Kiran, A. S. K., Kumar, T. S., Sanghavi, R., Doble, M., Ramakrishna, S., "Antibacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings", Nanomaterials, Vol. 8, No. 10, (2018). https://doi.org/10.3390/nano8100860
  52. Roh, H. S., Lee, C. M., Hwang, Y. H., Kook, M. S., Yang, S. W., Lee, D., Kim, B. H., "Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration", Materials Science and Engineering C, Vol. 74, (2017), 525-535. https://doi.org/10.1016/j.msec.2016.12.054
  53. Hassanzadeh Nemati, N., Ghasempour, E., Zamanian, A., "Effect of dual releasing of β-glycerophosphate and dexamethasone from Ti nanostructured surface for using in orthopedic applications", International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 10, (2019), 1337-1344. https://doi.org/10.5829/ije.2019.32.10a.01