نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی هسته‌ای، دانشگاه شهید بهشتی، تهران، تهران، ایران

2 دانشجوی دکتری، دانشکده مهندسی هسته‌ای، دانشگاه شهید بهشتی، تهران، تهران، ایران

3 دانشیار، دانشکده مهندسی هسته‌ای، دانشگاه شهید بهشتی، تهران، تهران، ایران

4 استادیار، گروه چرخه سوخت، دانشکده مهندسی هسته‌ای دانشگاه شهید بهشتی، تهران، تهران، ایران

10.30501/jamt.2022.283883.1169

چکیده

کاربید تیتانیم (TiC) و کاربید زیرکونیم (ZrC)، به‌عنوان نمونه‌هایی از سرامیک‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌های کاربیدی فلزات واسطه با ویژگی‌های عالی، از قبیل دمای ذوب بالا، استحکام و مقاومت فوق‌العاده زیاد تا دماهای بالا، چگالی کم، مقاومت در برابر اکسایش مطلوب، مقاومت در برابر خوردگی خوب، پایداری شیمیایی و عدم‌تغییر فاز تا فشارهای بالا، همواره مورد توجه بوده‌اند. این ویژگی‌های منحصربه‌فرد و کارآمد، در کنار هم، موجب استفاده گسترده این ترکیبات در ابزارهای برش، فناوری ذخیره‌سازی اطلاعات، پوشش‌های سخت و نازک حفاظت‌کننده از سطوح الکترونیکی و دستگاه‌های اپتوالکترونیکی شده است. در این پژوهش، با استفاده از روش نظریه تابعی چگالی و مدل شبه‌هارمونیک دبای، ویژگی‌های ساختاری و ترمودینامیکی دو ترکیب TiC و ZrC، به‌صورت تابعی از دما و فشار، بررسی شدند. نتایج ساختاری حاصل از به‌کارگیری معادلات حالت مختلف نشان داد که پارامترهای ساختاری با نتایج تجربی موجود مطابقت دارند. بررسی تأثیر دما و فشار بر مدول حجمی ‌نشان داد که ZrC در برابر افزایش دما و TiC در برابر اعمال فشار، مقاومت خوبی دارند. همچنین، نتایج حاصل از بررسی کمیت‌هایی مانند انرژی آزاد گیبس، بیانگر ثبات بیشتر ZrC در برابر افزایش دما و توجیه‌کننده دمای ذوب بالای آن در مقایسه با TiC است. محاسبات انجام‌شده در خصوص ویژگی‌های ترمودینامیکی، نظیر دمای دبای، ظرفیت گرمایی ویژه در حجم و فشار ثابت و ضریب انبساط حرارتی نیز گواه عملکرد خوب ترکیبات ZrC و TiC در برابر دما و فشار است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of Thermal Properties of Titanium Carbide and Zirconium Carbide as a Function of Temperature and Pressure Using Density Functional Theory

نویسندگان [English]

  • Maryam Khanzadeh 1
  • Hassan Alipour 2
  • Ali Hamedani 2
  • Ghasem Alahyarizadeh 3
  • Mahdi Aghaei Moghanloo 4

1 M. Sc., Faculty of Nuclear Engineering, Shahid Beheshti University, Tehran, Tehran, Iran

2 Ph. D. Student, Faculty of Nuclear Engineering, Shahid Beheshti University, Tehran, Tehran, Iran

3 Associate Professor, Faculty of Nuclear Engineering, Shahid Beheshti University, Tehran, Tehran, Iran

4 Assistant Professor, Department of Fuel Cycle, Faculty of Nuclear Engineering, Shahid Beheshti University, Tehran, Tehran, Iran

چکیده [English]

Titanium carbide (TiC) and zirconium carbide (ZrC) are among well-known transition-metal carbide ceramics which have received great attention in the past decades. This comes from their excellent properties including high melting temperature, extraordinary strength at high temperatures, chemical and mechanical stability, low density and, good resistance to corrosion and oxidation. All these unique and extraordinary features lead to the widespread applications of these compounds, including in cutting tools, information storage technology, hard and thin coatings as protectors of electronic surfaces protector, and optoelectronic devices. In this paper, the structural and thermodynamic properties of titanium carbide and zirconium carbide as a function of temperature and pressure were investigated, by using the density functional theory method and quasi-harmonic Debye model. The obtained structural results by using different equations of state showed that the structural parameters are in good agreement with the experimental results. The investigation of temperature and pressure effects on the bulk modulus indicated that zirconium carbide and titanium carbide have good strength at high temperatures and pressure, respectively. Also, the Gibbs free energy result showed that zirconium carbide remained stable up to high temperatures and this justifies its high melting temperature. Calculations of thermodynamic properties such as Debye temperature, specific heat capacity at constant volume and pressure, and thermal expansion coefficient also represent the good performance of zirconium carbide and titanium carbide compounds at high temperatures and pressures.

کلیدواژه‌ها [English]

  • Titanium Carbide
  • Zirconium Carbide
  • Density functional theory
  • High temperature and pressure
  • Mechanical and thermodynamic properties
  1. Varshney, D., Shriya, S., "Elastic, mechanical and thermodynamic properties at high pressures and temperatures of transition metal monocarbides", International Journal of Refractory Metals and Hard Materials, 41, (2013), 375-401. https://doi.org/10.1016/J.Ijrmhm.2013.05.013
  2. Li, H., Zhang, L., Zeng, Q., Guan, K., Li, K., Ren, H., Liu, Sh., Cheng, L., "Structural, elastic and electronic properties of transition metal carbides tmc (Tm= Ti, Zr, Hf and Ta) from first-principles calculations", Solid State Communications, 151, No. 8, (2011), 602-606. https://doi.org/10.1016/J.Ssc.2011.02.005
  3. Singh, A., Aynyas, M., Sanyal, S. P., "High pressure behavior and structural properties of transition metal carbides", Phase Transitions, 82, No. 8, (2009), 576-586. https://doi.org/10.1080/01411590903211309
  4. Rasei, F., Razavi, M., Mobasherpour, I., Rahimipour, M.,"The effect of temperature on sintering behavior of Fe-TiC composite prepared from ilmenite by SPS method", Journal of Advanced Materials and Technologies (JAMT), Vol. 8, No. 3, (2019), 31-37. https://doi.org/10.30501/jamt.2019.99498
  5. Rajabi, A., Ghazali, M. J., Daud, A., "Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet–A review", Materials & Design, 67, (2015), 95-106. https://doi.org/10.1016/J.Matdes.2014.10.081
  6. Jiao, Z. Y., Ma, S. H., Zhang, X. Z., Huang, X. F., "Pressure-induced effects on elastic and mechanical properties of TiC and TiN: a DFT study", Epl (Europhysics Letters) , 101, No. 4, (2013), 46002. https://doi.org/10.1209/0295-5075/101/46002
  7. Jing, Q., Wu, C. Y., Gong, H. R., "Phase transition, thermodynamic and elastic properties of ZrC", Transactions of Nonferrous Metals Society of China, 28, No. 12, (2018), 2520-2527. https://doi.org/10.1016/S1003-6326(18)64898-8
  8. Chauhan M., Gupta, D. C., "Electronic, mechanical, phase transition and thermo-physical properties of TiC, ZrC and HfC: high pressure computational study", Diamond And Related Materials, 40, (2013), 96-106. https://doi.org/10.1016/J.Diamond.2013.10.011
  9. Rathod, N., Gupta, S. K., Jha, P. K., "Dynamical stability and phase transition of ZrC under pressure", Phase Transitions, 85, No. 12, (2012), 1060-1069. https://doi.org/10.1080/01411594.2012.661862
  10. Ivashchenko, V. I., Turchi, P. E. A., Shevchenko, V., I., "Phase transformation B1 to B2 in TiC, TiN, ZrC and Zrn under pressure", Arxiv Preprint Arxiv:1309.6210, (2013). https://doi.org/10.5488/Cmp.16.33602
  11. Gill, P. M., "Molecular integrals over gaussian basis functions", Advances in Quantum Chemistry, 25, (1994), 141-205. https://doi.org/10.1016/S0065-3276(08)60019-2
  12. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., Luitz, J., Laskowski, R., Tran, F., Marks, L. D., "Wien2k: An Augmented Plane Wave + Local Orbitals program for calculating the properties of solids", The Journal of Chemical Physics, Vol. 152, No. 7, (2020), 074101. https://doi.org/10.1063/1.5143061
  13. Perdew, J. P., Burke, K., Wang, Y., "Generalized gradient approximation for the exchange-correlation hole of a many-electron system", Physical Review B, 54, No. 23, (1996), 16533. https://doi.org/10.1103/Physrevb.54.16533
  14. Perdew, J. , Burke, K., Ernzerhof, M., "Generalized gradient approximation made simple", Physical Review Letters, Vol. 77, No. 18, (1996), 3865. https://doi.org/10.1103/Physrevlett.77.3865
  15. Blanco, M., Francisco, E., Luana, V., "Gibbs: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic debye model", Computer Physics Communications, 158, No. 1, (2004), 57-72. https://doi.org/10.1016/J.Comphy.2003.12.001
  16. Flórez, M., Recio, J., Francisco, E., Blanco, M., Pendás, A. M., "First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides", Physical Review B, 66, No. 14, (2002), 144112. https://doi.org/10.1103/Physrevb.66.144112
  17. Francisco, E., Blanco, M., Sanjurjo, G., "Atomistic simulation of SrF2 polymorphs", Physical Review B, 63, No. 9, (2001), 094107. https://doi.org/10.1103/Physrevb.63.094107
  18. Bidai, K., Ameri, M., Bensaid, D., Amel, S., Ameri, I., Al-Douri, Y., "FP-LAPW investigation of mechanical and thermodynamic properties of X2O (X= Na and K) under pressure and temperature effects", Optik, 127, No. 12, (2016), 5155-5162. https://doi.org/10.1016/J.Ijleo.2016.03.004
  19. Hao, A., Zhou, T., Zhu, Y., Zhang, X., Liu, R., "First-principles investigations on electronic, elastic and thermodynamic properties of ZrC and ZrN under high pressure", Materials Chemistry and Physics, 129, No. 1-2, (2011), 99-104. https://doi.org/10.1016/J.Matchemphys.2011.03.060
  20. Murnaghan, F., "The compressibility of media under extreme pressures", Proceedings of the National Academy of Sciences of the United States of America, 30, No. 9, (1944), 244. https://dx.doi.org/10.1073%2Fpnas.30.9.244
  21. Gilman, J., Roberts, B., "Elastic constants of TiC and TiB2", Journal of Applied Physics, 32, No. 7, (1961), 1405-1405. https://doi.org/10.1063/1.1736249
  22. Razumovskiy, V., Popov, M., Ding, H., Odqvist, J., "Formation and interaction of point defects in group IVb transition metal carbides and nitrides", Computational Materials Science, 104, (2015), 147-154. https://doi.org/10.1016/J.Commatsci.2015.03.042
  23. Pugh, S. F., "XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, No. 367, (1954), 823-843. https://doi.org/10.1080/14786440808520496
  24. Brown, H., Kempter, C.,"Elastic properties of zirconium carbide", Physica Status Solidi (B), 18, No. 1, (1966), K21-K23. https://doi.org/10.1002/Pssb.19660180150
  25. Pierson, H. O., Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps, (1996). https://books.google.Nl/Books?Id=K_K7q3jaqxec
  26. Rahman, Md. A., Rahaman, Md. Z., Rahman, Md. A., "The structural, elastic, electronic and optical properties of MgCu under pressure: a first-principles study", International Journal of Modern Physics B, 30, No. 27, (2016), 1650199. https://doi.org/10.1142/S021797921650199x
  27. Ali, M. L., Rahaman, Md. Z., "Investigation of different physical aspects such as structural, mechanical, optical properties and debye temperature of Fe2ScM (M= P and As) semiconductors: A DFT-based first principles study", International Journal of Modern Physics B, 32, No. 10, (2018), 1850121. https://doi.org/10.1142/S0217979218501217
  28. Tian, Y., Xu, B., Zhao, Z., "Microscopic theory of hardness and design of novel superhard crystals", International Journal of Refractory Metals and Hard Materials, 33, (2012), 93-106. https://doi.org/10.1016/J.Ijrmhm.2012.02.021
  29. Garai, J., "Physics behind the debye temperature", Arxiv Preprint Physics, (2007). https://arxiv.org/Abs/Physics/0703001
  30. Hossain, M. T., "First principles and experimental study on MoS2-based nanocomposites for fuel cell application", Thesis, (2019). http://lib.Buet.Ac.Bd:8080/Xmlui/Handle/123456789/5452
  31. Duan, Y., Sun, Y., Peng, M., Zhou, S., "Anisotropic elastic properties of the Ca–Pb compounds", Journal of Alloys and Compounds, 595, (2014), 14-21. https://doi.org/10.1016/J.Jallcom.2014.01.108
  32. Li, X., Liu, Z., "First-principles investigations of structural and electronic properties of niobium nitrides under pressures", Journal of Atomic and Molecular Sciences, 3, No. 1, (2012), 78-88. https://doi.org/10.4208/Jams.040911.050711a
  33. Tritt, T. M., Thermal Conductivity: Theory, Properties, and Applications, Springer, New York, (2004), 285. https://doi.org/10.1007/b136496
  34. Hou, H., Yang, J., Hu, F., Zhang, S., Yang, S., "Structural, elastic and thermodynamic properties of rock-salt structure cdse at high temperature and high pressure'', Chalcogenide Letters, 11, No. 3, (2014), 121-128. https://chalcogen.Ro/121_Hou.Pdf
  35. Li, H., Wang, W. F., Zhu, B., Xu, M., Zhu, J., Hao, Y. J., Li, W. H., Long, X. J., "Elastic and thermodynamic properties of TiC from first-principles calculations", Science China Physics, Mechanics and Astronomy, Vol. 54, No. 1, (2011), 2196-2201. https://doi.org/10.1007/S11433-011-4500-0
  36. Hasan, M. Z., Hossain, M. M., Islam, M. S., Parvin, F., Islam, A. K. M. A., "Elastic, thermodynamic, electronic and optical properties of U2Ti", Computational Materials Science, Vol. 63, No. 0, (2012), 256-260. https://doi.org/10.1016/J.Commatsci.2012.06.019
  37. Chen, K., Zhao, L., "Elastic properties, thermal expansion coefficients and electronic structures of Ti75X0.25C Carbides", Journal of Physics and Chemistry of Solids, Vol. 68, No. 9, (2007), 1805-1811. https://doi.org/10.1016/J.Jpcs.2007.05.008
  38. Zhang, X., Sun, S., Xu, T., Zhang, T., "Temperature dependent grüneisen parameter", Science China Technological Sciences, 62, No. 9, (2019), 1565-1576. https://doi.org/10.1007/S11431-019-9526-3
  39. Sun, L., Gao, Y., Xiao, B., Li, Y., Wang, G., "Anisotropic elastic and thermal properties of titanium borides by first-principles calculations", Journal of Alloys and Compounds, 579, (2013), 457-467. https://doi.org/10.1016/J.Jallcom.2013.06.119
  40. Cheng, T., Keiser, J. R., Brady, M. P., Terrani, K. A., Pint, B. A., "Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure", Journal of Nuclear Materials, 427, No. 1-3, (2012), 396-400. https://doi.org/10.1016/J.Jnucmat.2012.05.007
  41. Mayer, , "Ab-initio calculation of the elastic constants and thermal expansion coefficients of laves phases", Intermetallics, Vol. 11, No. 1, (2003), 23-32. https://doi.org/10.1016/S0966-9795(02)00127-9