نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، پژوهشکده کاربرد پرتوها، پژوهشگاه علوم وفنون هسته‏ای، تهران، تهران، ایران

2 استادیار، پژوهشکده کاربرد پرتوها، پژوهشگاه علوم وفنون هسته‏ای، تهران، تهران، ایران

3 دانشیار، پژوهشکده کاربرد پرتوها، پژوهشگاه علوم وفنون هسته‏ای، تهران، تهران، ایران

چکیده

از هسته فرومغناطیس نیکل ـ مس به‌منظور استفاده در فرایند گرمادرمانی به‌صورت موضعی و برای درمان تومورهای ایجادشده در مناطق عمقی بدن مانند تومورهای مغزی و پروستات استفاده می‏شود. در تحقیق حاضر، به‌منظور بررسی پارامترهای مؤثر بر میزان گرمای قابل‌ تولید در هسته فرومغناطیس و تعیین شرایط بهینه قبل از انجام فرایندهای آزمایشگاهی، از نرم‌افزار کامسول مولتی‏فیزیک (Comsol Multyphysics 5.4) استفاده شد. مدل مورد مطالعه، از یک هسته فرومغناطیس آلیاژ نیکل ـ مس با 4/70 - 6/29 درصد وزنی در دو اندازه متفاوت تشکیل شد که در مرکز فانتوم استوانه‏ای آب با شعاع‏های متغیر 20-60 میلی‌متر قرار گرفته و از روش تحلیل اجزای محدود برای بررسی توزیع دمایی حاصل از القای امواج الکترومغناطیس استفاده شد. پروفایل دمایی ناشی از جای‌گذاری هسته فرومغناطیس در میدان الکترومغناطیس با فرکانس 350-75 کیلوهرتز و شدت میدان مغناطیسی القایی     200-500 اورستد نشان ‏داد که امکان کنترل دمایی در محل قرارگیری هسته فرومغناطیس، به‌منظور ایجاد دمای مطلوب در فرایند گرمادرمانی وجود دارد. کاهش شعاع فانتوم، مانند افزایش حجم هسته فرومغناطیس، در نتیجه‏ افزایش میزان میدان القایی در مرکز فانتوم، به افزایش دمای القایی در هسته، با اعمال یک جریان و فرکانس ثابت منجر ‏شد. افزایش فرکانس در میدانی ثابت و همچنین افزایش میدان در فرکانسی ثابت، حاکی از افزایش دمای القایی در هسته بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of the Effect of Phantom Size and Ferromagnetic Core of Ni-Cu Alloy on the Amount of Induction Heating in the Thermotherapy Process Using Comsol Multyphysics® Software

نویسندگان [English]

  • Najmeh Mirzababaei 1
  • Elham Mohagheghpour 2
  • Shahab Sheibani 3

1 M. Sc., Radiation Applications Research School, Nuclear Sciences and Technology Research Institute, Tehran, Tehran, Iran

2 Assistant Professor, Radiation Applications Research School, Nuclear Sciences and Technology Research Institute, Tehran, Tehran, Iran

3 Associate Professor, Radiation Applications Research School, Nuclear Sciences and Technology Research Institute, Tehran, Tehran, Iran

چکیده [English]

Nickel-Copper ferromagnetic core is used for interstitial local thermotherapy techniques to treat deep-seated tumors such as brain tumors and prostatic tumors. In the present study, the effective parameters on the amount of induction heating in the ferromagnetic core and determining the optimal conditions before performing laboratory processes was investigated by the Comsol Multiphysics 5.4 software. The model consisted of a single Nickel-Copper ferromagnetic core (29.6-70.4 wt %) in the two different size that placed in the central region of a cylindrical water phantom with different radius between 20 mm up to 60 mm. For the study of the thermal distribution due to the electromagnetic induction was used from a finite-element analysis method. The temperature profiles of the ferromagnetic core in the electromagnetic field with a frequency of 75- 350 kHz and the magnetic field of strength (H0) with 200-500 Oe up to 30 minutes showed the possibility of temperature control at the thermo-seed for producing the desired temperature in the thermotherapy process. The decreased phantom radius, as well as increase in the volume of the ferromagnetic core led to a rise in the induction temperature of the core due to the increase in the amount of induced field at the center of the phantom in the constant current and frequency. The results showed that the induced temperature in the core was increased due to the rise of the magnetic field in the fixed frequency or the increase of the frequency in the fixed magnetic field type, which is within most of us interested.

کلیدواژه‌ها [English]

  • Thermotherapy
  • Magnetic Induction
  • Ferromagnetic Core
  • Comsol Multyphysics Software
  1. Warrell, G., Shvydka, D., Parsai, E. I., "Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments", Medical Physics, Vol. 43. No. 11, (2016), 6033-6048. https://doi.org/10.1118/1.4964457
  2. Chicheł, A., Skowronek, J., Kubaszewska, M., Kanikowski, M., "Hyperthermia–description of a method and a review of clinical applications", Reports of Practical Oncology & Radiotherapy, Vol. 12, No. 5, (2007), 267-275. https://doi.org/10.1016/S1507-1367(10)60065-X
  3. Fratila, R. M., Fuente, J.M., "Introduction to hyperthermia", Nanomaterials for Magnetic and Optical Hyperthermia Applications, (2019), 1-10. https://doi.org/10.1016/B978-0-12-813928-8.09997-X
  4. Taheri, A. A., Taghilou, M., "Towards a uncertainty analysis in thermal protection using phase-change micro/nano particles during hyperthermia", International Journal of Engineering, Vol. 34, No. 1, (2021), 263-271. https://doi.org/10.5829/ije.2021.34.01a.29
  5. Yacoob, S. M., Hassan, N. S., "FDTD analysis of a noninvasive hyperthermia system for brain tumors", Biomedical Engineering Online, 47, No. 1, (2012), 11. https://link.springer.com/article/10.1186/1475-925X-11-47
  6. Thiesen, B., Jordan, A., "Clinical applications of magnetic nanoparticles for hyperthermia", International Journal of Hyperthermia, Vol. 24, No. 6, (2008), 467-474. https://doi.org/10.1080/02656730802104757
  7. Kobayashi, T., Kida, Y., Ohta, M., Tanaka, T., Kageyama, N., Kobayashi, H., Amemiya, Y. "Magnetic induction hyperthermia for brain tumor using ferromagnetic implant with low Curie temperature", Neurologia Medico-Chirurgica, Vol. 26, No. 2, (1986), 116-121. https://doi.org/10.2176/nmc.26.116
  8. Lilly, M. B., Brezovich, I. A., Atkinson, W. J., "Hyperthermia induction with thermally self-regulated ferromagnetic implants", Radiology, Vol. 154, No. 1, (1985), 243-244. https://doi.org/10.1148/radiology.154.1.3964942
  9. Brezovich, I. A., Atkinson, W. J., Lilly, M. B., "Local hyperthermia with interstitial techniques", Cancer Research, Vol. 44, No. 10, (1984), 4752s-4756s. https://cancerres.aacrjournals.org/content/44/10_Supplement/4752s.short
  10. Johannsen, M., Gneveckow, U., Eckelt, L., Feussner, A., Waldöfner, N., Scholz, R., Deger, S., Wust, P., Loening, S. A., Jordan, A., "Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique", International Journal of Hyperthermia, Vol. 21, No. 7, (2005), 637-647. https://doi.org/10.1080/02656730500158360
  11. Elengoe, A., Hamdan, S., "Hyperthermia and its clinical application in cancer treatment", International Journal of Advancement in Life Sciences Research, Vol. 1, No. 1, (2018), 22-27. https://doi.org/31632/ijalsr.2018v01i01.003
  12. Lee, S. Y., Szigeti, G. P., Szasz, A. M., "Oncological hyperthermia: The correct dosing in clinical applications", International Journal of Oncology, Vol. 54, No. 2, (2019), 627-643. https://doi.org/10.3892/ijo.2018.4645
  13. Shvydka, D., Gautam, B., Parsai, E., Feldmeier, J., "SU‐FF‐T‐39: Investigating thermal properties of a thermobrachytherapy radioactive seed for concurrent brachytherapy and hyperthermia treatments: design considerations", Medical Physics, 36. No. 6, (2009), 2528-2528. https://doi.org/10.1118/1.3181511
  14. Kuznetsov, A., Shlyakhtin, O., Brusentsov, N., Kuznetsov, O., "Smart mediators for self-controlled inductive heating", European Cells and Materials, Vol. 3, No. 2, (2002), 75-77. https://www.researchgate.net/publication/279897579_Smart_mediators_for_self-controlled_inductive_heating
  15. Nezamdoust, A., Mohagheghpour, E., Sheibani, S., Mirzababaei, N., Solouk, A, "Simulation of hyperthermia process by magnetic induction in low curie temperature ferromagnetic core for the treatment of high grade solid tumors by comsol multyphysics software", Proceedings of The Second National Congress of Bioelectromagnetic: Opportunities and Challenges, Iran, 18-19 February 2020, (2020). (In Farsi). https://www.civilica.com/Paper-NBCOCMED02-NBCOCMED02_025.html
  16. Shahbahrami, B., Rabiee, S., Shidpoor, R., "An overview of cobalt ferrite core-shell nanoparticles for magnetic hyperthermia applications", Advanced Ceramics Progress, Vol. 6, No. 1, (2020), 1-15. https://doi.org/30501/acp.2020.105923
  17. Sharifi, I., Zaamanian, A., Behnamghader, A., "Synthesis and characterization of Co-Zn ferrite nanoparticles embedded in a thermo-sensitive polymer", Journal of Advanced Materials and Technologies (JAMT),Vol. 7, No. 4, (2019), 51-57. (In Farsi). https://www.sid.ir/fa/journal/ViewPaper.aspx?id=501411
  18. Gautam, B., Parsai, E. I., Shvydka, D., Feldmeier, J., Subramanian, M., "Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors", Medical Physics, Vol. 39, No. 4, (2009), 1980-1990. https://doi.org/10.1118/1.3693048
  19. Geng, Y. C., Wang, X. X., Ma, Y., Hu, Y., Zhang, R. L., "Orientated thermotherapy offerromagnetic thermoseed in hepatic tumors", World Journal of Gastroenterology, Vol. 4, No. 4, (1998), 326. https://doi.org /3748/wjg.v4.i4.326
  20. Parsai, E. I., Gautam, B., Shvydka, D., "Evaluation of a novel thermobrachytherapy seed for concurrent administration of brachytherapy and magnetically mediated hyperthermia in treatment of solid tumors", Journal of Biomedical Physics and Engineering, Vol. 1, No. 1, (2011), 5-16. https://jbpe.sums.ac.ir/article_43019.html
  21. Khan, N., "Dosimetric calculation of a thermo brachytherapy seed: A Monte Carlo study", M. Sc. Thesis, University of Toledo, (2008). https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=mco1228860927
  22. Gautam, B. R., "Study of dosimetric and thermal properties of a newly developed thermo-brachytherapy seed for treatment of solid tumors", Doctoral dissertation, University of Toledo, College of Arts and Sciences, (2013). https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:toledo1365181537
  23. Mohagheghpour, E., Nezamdoust, A. H., "Simulation of the thermotherapy process by magnetic induction in Ni-Cu alloy by comsol multyphysics software", Journal of Science and Engineering Elites, Vol. 5, No. 1, (2021), 78-83. (In Farsi). https://www.sid.ir/fa/journal/ViewPaper.aspx?id=537038