نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مواد، واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، اصفهان، اصفهان، ایران

2 دانشیار، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، چهارمحال و بختیاری، ایران

3 دانشیار، گروه مهندسی مواد، واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، اصفهان، اصفهان، ایران

چکیده

در این پژوهش، اثر دمای اَبَر‌گرمایش بر ریزساختار و رفتار الکتروشیمیایی آند فداشونده Al-Zn-In بررسی شده است. ریخته‌گری در سه دمای مختلف 660، 680 و 700 درجه‌ سلسیوس، انجام و ریزساختار توسط  میکروسکوپ نوری، الکترونی و تحلیل تصویری بررسی شد. رفتار الکتروشیمیایی آلیاژ نیز با انجام آزمون‌های امپدانس الکتروشیمیایی و قطبش مطالعه شد. با توجه به نتایج به‌دست‌آمده، نمونه ریخته‌گری‌شده در دمای 680 درجه‌ سلسیوس، با عدد کروی‌شدن 68/0 و عدد اندازه دانه 45 میکرون، بالاترین درجه کروی‌شدن و ریزدانگی را داشت. همچنین، نمونه مذکور دارای سرعت خوردگی 086/0 میلی‌متر در سال بود که در مقایسه با سایر نمونه‌ها بیشترین سرعت خوردگی را داشت و نتایج آزمون امپدانس الکتروشیمیایی نیز، رفتار بهتر نمونه ریخته‌گری‌شده در دمای 680 درجه سلسیوس را تأیید می‌‌کرد. افزایش دمای اَبَر‌گرمایش به 700 درجه سلسیوس، افت خواص الکتروشیمیایی و ریزساختاری نمونه را در پی داشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Superheat Temperature on the Microstructure and Corrosion Behavior of Al-Zn-In Sacrificial Anode Produced by Semi-Solid Cooling Slope Casting

نویسندگان [English]

  • Mojtaba Soltanpour 1
  • Behrooz Shayegh Boroujeny 2
  • Amir Abbas Nourbakhsh 3

1 Ph. D. Student, Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Isfahan, Iran

2 Associate Professor, Department of Materials Engineering, Faculty of Technology and Engineering, Shahrekord University, Shahrekord, Chaharmahal and Bakhtiari, Iran

3 Associate Professor, Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Isfahan, Iran

چکیده [English]

In this study, the effect of superheat temperature of cooling slope process on the microstructure and electrochemical behavior of Al-Zn-In sacrificial anode has been investigated. Cooling slope Semisolid Casting was performed at three different temperatures of 660, 680, and 700 °C and the microstructure investigated by optical microscopy, electron microscopy and image analysis software. The electrochemical behavior of the alloy was determined by electrochemical impedance and polarization tests. According to the results, the sample produced by cooling slope at a temperature of 680 °C with a sphericity number of 0.68 and grain size of 45 microns had the maximum sphericity and minimum grain size. Also, the mentioned sample had the corrosion rate of 0.086 mm/year, which was the highest corrosion rate compared to other samples, and the results of the electrochemical impedance test confirmed the better behavior of its. Increasing the superheat temperature to 700 °C has led to a decrease in the electrochemical and microstructural properties of the sample.

کلیدواژه‌ها [English]

  • Aluminum sacrificial anode
  • Semi-Solid Cooling Slope Casting
  • Sphericity Number
  • Grain Size
  • corrosion rate
  1. Keyvani, A., Emamy, M., Saremi, M., Sina, H., Mahta, M., "Influence of casting temperature on electrochemica behavior of Al-Zn-In sacrificial anodes", Iranian Journal of Chemistry and Chemical Engineering, Vol. 24, 35, (2005), 1-8. https://doi.org/10.30492/IJCCE.2005.7791
  2. Barrbucci, A., Cerisola, G., "Activation of aluminum anodes by the presence of intermetallic compounds", Electrochemical Acta Material, Vol. 42, 15, (1996), 1045-1057. https://doi.org/10.1016/S0013-4686(96)00420-3
  3. Christian, V. I., Corrosion of aluminium, Amsterdam, Boston, Elsevier, (2004), 100-108. https://doi.org/10.1016/B978-0-08-044495-6.X5000-9
  4. Puridetvorakul, C., Poolthong, N., Tareelap, N., "Corrosion behavior of Al-Zn-In sacrificial anode alloys produced by conventional casting and semi-solid metal casting processes", Key Engineering Materials, Vol. 751, (2017), 101-106. https://doi.org/10.4028/www.scientific.net/KEM.751.101
  5. Lazzari, L., Pedefferri, D., Cathodic protection, Polipess, Milan, (2006), 151-170. https://www.amazon.com/Cathodic-Protection-Pedeferri-Pietro/dp/8873980201#detailBullets_feature_div
  6. Metals Hand Book, Casting, 9th, Vol. 15, (1992). http://s1.iranmavad.com/ASM%20hanbooks/Vol_15_casting_iran-mavad.com.pdf
  7. Khan, B., Rosli, M. U., Jahidi, H., IkmanIshak, M., Zakaria, M. S., Jamalludin, M. R., Khor, C. Y., Faizal, W. M., Rahim, W. M., Nawi, M. A. M., "Effect of zinc addition on the performance of aluminium alloy sacrificial anode for marine application", AIP Conference Proceedings, Vol. 1885, (2017). https://doi.org/10.1063/1.5002268
  8. Shayegh Boroujeny, B., "Verifying the effects of SIMA (Strain Induced Melt Activation) process on corrosion behavior in Al sacrificial anodes", Journal of Advanced Materials and Technologies (JAMT), Vol. 5, No. 7, (2017), 51-64. https://doi.org/10.30501/JMAT.2017070340
  9. Giordano, P., Chiarmetta, G., "Thixo and rheocasting: comparison on a high production volume component", Proceedings of 7th International Conference on Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, 25–27 September 2002, (2002), Online paper. https://www.researchgate.net/publication/264548682_THIXO_AND_RHEO_CASTING_COMPARISON_IN_A_HIGH_PRODUCTION_VOLUME_COMPONENT
  10. Qin, Q. D., Zhao, Y. G., Cong, P. J., Zhou, W., Xu, B., "Semisolid microstructure of Mg2Si/Al composite by cooling slope cast and its evolution during partial remelting process", Materials Science and Engineering: A, Vol. 444, No. 1-2, (2007), 99-103. https://doi.org/10.1016/j.msea.2006.08.074
  11. Salarfar, S., Akhlaghi, F., Nili-ahmadabadi, M., "Influence of pouring conditions in the inclined plate process and reheating on the microstructure of the semisolid A356 aluminum Alloy", Proceedings of 7th International Conference on Semi-Solid Processing of Alloys and Composites, Limassol, Cyprus, 21-23 September 2004, (2004). Online paper. https://www.researchgate.net/publication/288724174_Influence_of_pouring_conditions_in_the_inclined_plate_process_and_reheating_on_the_microstructure_of_the_semi-solid_A356_aluminum_alloy?_sg=CDkgqFtP5ZGIIbsAiKigQOEsISELvzNGqfTfeFPNCtKXun-NVcLnCRQHgYctlI2tqXGcLOKOxgAMNbA
  12. Movahedi, M., Karimi, A., Nia-Manesh, H., "Effect of angle of inclined plate on the microstructure of 7075 aluminum alloy", Proceedings of 10th Congress of Iranian Institute of Materials and Metallurgy Engineering, Shiraz, Iran, 16-18 November 2006, (2006). https://civilica.com/doc/104771/
  13. Birol, Y., "Semi-solid processing of the primary aluminum die-casting alloys A356", Alloys and Compounds, Vol. 473, No. 7, (2009), 133-138. https://doi.org/ 1016/j.jallcom.2008.05.074
  14. Motegi, T., Tanabe, F., sugiura, E., "Continuous casting of semisolid aluminium alloys", Materials Science Forum, Vol. 1, (2002), 203-208. https://doi.org/10.4028/www.scientific.net/MSF.396-402.203
  15. Barabazon, D., Browne, D. J., Carr, A. J., "Mechanical stir casting of aluminium alloy from the mushy state: Process, microstructure and mechanical properties", Materials Science and Engineering: A, Vol. 326, No. 2, (2002), 370-381. https://doi.org/10.1016/S0921-5093(01)01832-9
  16. Nagato, K., Sugiyama, S., Yanagida, A., Yanagimoto, J., "Single-pass severe plastic forming of ultrafine-grained plain carbon steel", Materials Science and Engineering: A, Vol. 478, No. 1-2, (2008), 376-383. https://doi.org/10.1016/j.msea.2007.06.039
  17. Wang, J. T., Xu, C., Du, Z. Z., QU, G. Z., Langdon, T. G., "Microstructure and properties of a low-carbon processed by equal-channel angular pressing", Materials Science and Engineering: A, Vol. 410-411, (2005), 312-315. https://doi.org/10.1016/j.msea.2005.08.111
  18. Young, K. P., Kyonka, C. P., Courtois, J. A., Fine Grained Metal Composition, U. S. Patent 4,415,374, (1982). http://patft.uspto.gov/netacgi/nph Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PALL&s1=4415374.PN
  19. Haga, T., Kapranos, P., Kirkwood, K. D., Atkinson, H. V., "617 Thixoforming of laminate assembled from roll cast strips", Proceedings of JSME Materials and Processing Conference, Society of Mechanical Engineers, Japan, (2002), 512-515. https://doi.org/10.1299/jsmeintmp.10.2.512
  20. Yılmaz, E., Cadirli, E., Acerc, E., Gunduz, M., "Microstructural evolution and mechanical properties in directionally solidified Sn–10.2 Sb peritectic alloy at a constant temperature gradient", International Journal of Materials Research, Vol. 19, No. 2, (2016), 370-378. https://doi.org/ 1590/1980-5373-MR-2015-0104
  21. Yan, G., Zhao, S., Ma, S., Shou, H., "Microstructural evolution of A356.2 alloy prepared by the SIMA process", Journal of Materials Characterization, Vol. 69, (2012), 45-51. http://doi.org/1016/j.matchar.2012.04.005
  22. Reisi, M., Niroumand, B., "Growth of primary particles during secondary cooling of a rheocast alloy", Journal of Alloys and Compounds, Vol. 475, No. 1, (2009), 643-647. https://doi.org/10.1016/j.matchar.2012.04.005
  23. Munoz, A. G., Saidman, S. B., Bessone, J. B., "Corrosion of an Al–Zn–In alloy in chloride media", Journal of Corrosion Science, Vol. 44, No. 10, (2002), 2171-2182. https://doi.org/10.1016/S0010-938X(02)00042-2
  24. Salinas, D. R., Garciaa, S. G., Bessone, J. B., "Infuence of alloying elements and microstructure on aluminium sacrifcial anode performance: Case of Al-Zn", Journal of Applied Electrochemistry, Vol. 29, No. 9, (1999), 1063-1071. https://doi.org/10.1023/A:1003684219989
  25. Jingling, M. A., Jiuba, W., Gengxin, L. I., Chunhua, X. V., "The corrosion behaviour of Al–Zn–In–Mg–Ti alloy in NaCl solution", Journal of Corrosion Science, Vol. 52, No. 2, (2010), 534-539. https://doi.org/10.1016/j.corsci.2009.10.010