نوع مقاله : مقاله مروری پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، تهران، ایران

2 دانشجوی کارشناسی، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، تهران، ایران

3 استادیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، تهران، ایران

4 استاد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، تهران، ایران

چکیده

مواد دوبعدی، گروهی از مواد هستند که تنها یک بعد آن‎ها در مقیاس نانوست. هرچقدر تعداد اتم‌‎های سطحی در مواد دوبعدی بیشتر باشد، واکنش‎‌پذیری فیزیکی و شیمیایی در آن‎ها، در مقایسه با حالت توده‌ای (bulk)، افزایش می‌یابد. ویژگی‌های مواد دوبعدی، نظیر نسبت سطح به حجم بالا، ریخت‌شناسی صفحه‌ای و ویژگی‌های مکانیکی، نوری، الکتریکی و مغناطیسی قابل‌تنظیم آن‌ها، باعث شده است انتخاب مؤثری در کاربردهایی مانند الکترواپتیک، قطعات الکترونیکی، انرژی، محیط‌‌ ­زیست، زیست‌پزشکی و دارو‌رسانی باشند. مواد دوبعدی به ده دسته کلی تقسیم می‎‌شوند که عبارت‌اند از مواد دوبعدی پایه کربنی (شامل گرافن، اکسید گرافن، اکسید گرافن احیاشده، گرافِین، فلوئوروگرافن، گرافاین، گرافیدین و گرافون)، نیترید بور هگزاگونال، کربونیترید گرافیتی، مواد دوبعدی عنصری (عناصر گروه 14‌ و 15)، دی‌کالکوژنیدهای فلزات واسطه، اکسید فلزات واسطه، مکسن‎، مواد پروسکایت دوبعدی، فلزات دوبعدی و رس‎‌های دوبعدی (مشتمل بر رس‎های سیلیکاتی و هیدروکسیدهای دولایه‌‎ای). در این مقاله، پس از تقسیم‌بندی این مواد، هریک از آن‌ها معرفی و برخی ویژگی‌ها و کاربردهای آن‎ها بررسی‌ شده ‌است. اگرچه تاکنون بیشتر درباره گرافن مطالعه شده است تا سایر مواد دوبعدی، انتظار می‎‌رود این مواد نیز، از نظر ویژگی‌ها و کاربرد، دارای ظرفیتی مشابه گرافن باشند و در آینده، پژوهش‎‌های بیشتری دربارۀ آن‎ها انجام و به تعداد این مواد اضافه شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

2D Materials; Introduction, Classifications, Properties, and Applications

نویسندگان [English]

  • Zahra Raadi 1
  • Amirhossein Rahimi 2
  • Hajar Ghanbari 3
  • Hossein Sarpoolaky 4

1 M. Sc. Student, School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Tehran, Iran

2 B. Sc. Student, School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Tehran, Iran

3 Assistant Professor, School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Tehran, Iran

4 Professor, School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Tehran, Iran

چکیده [English]

2D materials are a class of materials with only one dimension in nanoscale. Due to the increase in the number of surface atoms in two-dimensional materials, the physical and chemical reactivity compared to the bulk counterpart significantly increased. 2D materials characteristics such as high anisotropy, high surface area, unique morphology, and tunable mechanical, optical, electrical, and magnetic functionalities come out to be a fascinating candidate for application in electro-optical and electronic devices, energy and environmental fields, as well as biomedical and drug delivery in medicine. 2D materials are divided into ten major groups, including carbon-based 2D materials (includes graphene, graphene oxide, reduced graphene oxide, graphane, fluorographene, graphyne, graphdiyne, graphone), hexagonal boron nitride (hBN), graphitic C3N4, elemental 2D materials (elements groups 14 and 15), transition metal dichalcogenides (TMDs), transition metal oxides (TMOs), MXenes, 2D perovskite materials, 2D metal materials, and 2D clay materials (silicate clays and layered double hydroxides (LDHs)). In this paper, after the classification of these materials, the introduction, application, and related properties are investigated. So far, more studies have been done on graphene than other 2D materials. These materials are expected to have a similar capacity to graphene in terms of properties and applications, while ongoing research will increase the diversities of this category and depth of knowledge on these groups of materials.

کلیدواژه‌ها [English]

  • 2D materials
  • nano materials
  • Properties
  • Application
  1. Jayakumar, A., Surendranath, A., Pv, M., "2D materials for next generation healthcare applications", International Journal of Pharmaceutics, Vol. 551, No. 1-2, (2018), 309-321. https://doi.org/10.1016/j.ijpharm.2018.09.041
  2. Mohamadnezhad, M., "Ultrathin two-dimensional nanomaterial introduction and application", Donyaye Nano, Vol. 15, No. 54, (2019), 70-80. (In Farsi). (http://donyayenano.ir/article_46116.html)
  3. Kim, F., Cote, L., Huang, J., "Graphene oxide: Surface activity and two-dimensional assembly", Advanced Materials (Deerfield Beach, Fla.), Vol. 22, (2010), 1954-1958. https://doi.org/10.1002/adma.200903932
  4. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A., "Electric field in atomically thin carbon films", Science, Vol. 306, No. 5696, (2004), 666-669. https://doi.org/10.1126/science.1102896
  5. Huo, C., Huo, C., Yan, Z., Song, X., Zeng, H., "2D materials via liquid exfoliation: A review on fabrication and applications", Science Bulletin, Vol. 60, No. 23, (2015), 1994-2008. https://doi.org/10.1007/s11434-015-0936-302896
  6. Goenka, S., Sant, V., Sant, S., "Graphene-based nanomaterials for drug delivery and tissue engineering", Journal of Controlled Release, Vol. 173, (2014), 75-88. https://doi.org/10.1016/j.jconrel.2013.10.017
  7. Vargas-Bernal, R., "Electrical properties of two-dimensional materials used in gas sensors", Sensors (Switzerland), Vol. 19, No. 6, (2019). https://doi.org/10.3390/s19061295
  8. Bhuyan, M. S. A., Uddin, M. N., Islam, M. M., Bipasha, F. A., Hossain, S. S., "Synthesis of graphene", International Nano Letters, Vol. 6, No. 2, (2016), 65-83. https://doi.org/10.1007/s40089-015-0176-1
  9. Lee, C., Wei, X., Kysar, J. W., Hone, J., "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, Vol. 321, No. 5887, (2008), 385. https://doi.org/10.1126/science.1157996
  10. Geim, A. K., "Graphene: Status and prospects", Science, Vol. 324, No. 5934, (2009), 1530. https://doi.org/10.1126/science.1158877
  11. Daneshmand, S. H., Zakeri, M., Shojaee, T., Mohammadbeigy, A., Nazari, A., "The effect of graphene percent on mechanical properties of Cu/graphene nanocomposites", Journal of Advanced Materials and Technologies (JAMT), Vol. 3, No. 1, (2014), 37-43. (In Farsi). https://doi.org/10.30501/jamt.2635.70250
  12. Novoselov, K. S., Fal′k, I., Colombo, L., Gellert, P. R., Schwab, M. G., Kim, K., "A roadmap for graphene", Nature, Vol. 490, No. 7419, (2012), 192-200. https://doi.org/10.1038/nature11458
  13. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K., "The electronic properties of graphene", Reviews of Modern Physics, Vol. 81, No. 1, (2009), 109-162. https://doi.org/10.1103/RevModPhys.81.109
  14. Ghosh, S., Bao, W., Nika, D. L., Subrina, S., Pokatilov, E. P., Lau, C. N., Balandin, A. A., "Dimensional crossover of thermal transport in few-layer graphene", Nature Materials, Vol. 9, No. 7, (2010), 555-558. https://doi.org/10.1038/NMAT2753
  15. Lee, W., Kihm, K. D., Ko, S. H., "Thermal conductivity reduction of multilayer graphene with fine grain sizes", JMST Advances, Vol. 1, No. 1-2, (2019), 191-195. https://doi.org/10.1007/s42791-019-0008-y
  16. Tang, K., Zhu, F., Li, Y., Duan, K., Liu, S., Chen, Y., "Effect of defects on thermal conductivity of graphene", Proceedings of 15th International Conference on Electronic Packaging Technology, Chengdu, China, IEEE, (2014), 592-595. https://doi.org/10.1109/ICEPT.2014.6922725
  17. Ghanbari, H., Sarraf-Mamoori, R., Sabaghzadeh, J., Malekfar, R., "Semiconducting coating based on laser-synthesized graphene nanosheets", Iranian Journal of Ceramic Science & Technology, Vol. 2, No. 2, (2013), 85-96. (In Farsi). http://ijcse.ir/article-1-121-fa.html
  18. Balandin, A. A., "Thermal properties of graphene and nanostructured carbon materials", Nature Materials, Vol. 10, No. 8, (2011), 569-581. https://doi.org/10.1038/nmat3064
  19. Bunch, J. S., Verbridge, S. S., Alden, J. S., van der Zande, A. M., Parpia, J. M., Craighead, H. G., McEuen, P. L., "Impermeable atomic membranes from graphene sheets", Nano Letters, Vol. 8, No. 8, (2008), 2458-2462. https://doi.org/10.1021/nl801457b
  20. Jalili, M., Ghanbari, H., Moemen Bellah, S. Malekfar, R., "High-quality liquid phase-pulsed laser ablation graphene synthesis by flexible graphite exfoliation", Journal of Materials Science & Technology, Vol. 35, No. 3, (2019), 292-299. https://doi.org/10.1016/j.jmst.2018.09.048
  21. Ghanbari, H., Sarraf-Mamoory, R., Sabbagh Zadeh, J., Chehrghani, A., Malekfar, R., "Nonlinear optical absorption of carbon nanostructures synthesized by laser ablation of highly oriented pyrolytic graphite in organic solvents", International Journal of Optics and Photonics (IJOP), Vol. 7, No. 2, (2013), 113-124. http://ijop.ir/article-1-161-en.html
  22. Ghanbari, H., "LP-PLA of graphite for the graphene nanosheets synthesis in different solvents and by diverse lasers", Proceedings of 5th International Conference on Nanoscience and Nanotechnology, Tehran, Iran, (2014).
  23. Ghanbari, H., Shafikhani, M. A., Daryalaal, M., "Graphene nanosheets production using liquid-phase exfoliation of pre-milled graphite in dimethylformamide and structural defects evaluation", Ceramics International, Vol. 45, No. 16, (2019), 20051-20057. https://doi.org/10.1016/j.ceramint.2019.06.267
  24. Perruisseau-Carrier, J., Tamagnone, M., Gomez-Diaz, J. S., Carrasco, E., "Graphene antennas: can integration and reconfigurability compensate for the loss?", Proceedings of 2013 European Microwave Conference, Nuremberg, Germany, IEEE, (2013), 369-372. http://doi.org/10.23919/EuMC.2013.6686668
  25. Han, S. -J., Jenkins, K. A., Valdes Garcia, A., Franklin, A. D., Bol, A. A., Haensch, W., "High-frequency graphene voltage amplifier", Nano Letters, Vol. 11, No. 9, (2011), 3690-3693. https://doi.org/10.1021/nl2016637
  26. Dubey, A., Dave, S., Lakhani, M., Sharma, A., "Applications of graphene for communication, electronics and medical fields: A review", Proceedings of 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, IEEE, (2016), 2435-2439. https://doi.org/10.1109/ICEEOT.2016.7755131
  27. Ke, Q., Wang, J., "Graphene-based materials for supercapacitor electrodes – A review", Journal of Materiomics, Vol. 2, No. 1, (2016), 37-54. https://doi.org/10.1016/j.jmat.2016.01.001
  28. Syama, S., Mohanan, P. V., "Comprehensive application of graphene: Emphasis on biomedical concerns", Nano-Micro Letters, Vol. 11, No. 1, (2019), 6. https://doi.org/10.1007/s40820-019-0237-5
  29. Chen, D., Feng, H., Li, J., "Graphene oxide: Preparation, functionalization, and electrochemical applications", Chemical Reviews, Vol. 112, No. 11, (2012), 6027-6053. https://doi.org/10.1021/cr300115g
  30. Abadi, Z., Sangpour, P., Tajabadi, F., "Fabrication of graphene oxide thin films on transparent substrate via a low-voltage electrodeposion technique", Advanced Ceramics Progress, Vol. 1, No. 2, (2015), 6-10. https://doi.org/10.30501/acp.2015.70004
  31. Eshghinejad, P., Farnoush, H., "Mechanical properties of electrophoretically deposited 45S5 bioglass-graphene oxide composite coatings", Advanced Ceramics Progress, Vol. 5, No. 4, (2019), 17-23. https://doi.org/10.30501/acp.2019.103586
  32. Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., Sun, L., "Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites", Nano Materials Science, Vol. 1, No. 1, (2019), 31-47. https://doi.org/10.1016/j.nanoms.2019.02.004
  33. Abraham, J., Vasu, K. S., Williams, C. D., Gopinadhan, K., Su, Y., Cherian, C. T., Dix, J., Prestat, E., Haigh, S. J., Grigorieva, I. V., Carbone, P., Geim, A. K., Nair, R. R., "Tunable sieving of ions using graphene oxide membranes", Nature Nanotechnology, Vol. 12, No. 6, (2017), 546-550. https://doi.org/10.1038/nnano.2017.21
  34. Ma, M., Guo, L., Anderson, D. G., Langer, R., "Bio-inspired polymer composite actuator and generator driven by water gradients", Science, Vol. 339, No. 6116, (2013), 186. https://doi.org/10.1126/science.1230262
  35. Pei, S., Cheng, H. -M., "The reduction of graphene oxide", Carbon, Vol. 50, No. 9, (2012), 3210-3228. https://doi.org/10.1016/j.carbon.2011.11.010
  36. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., Ruoff, R. S., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon, Vol. 45, No. 7, (2007), 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034
  37. Williams, G., Seger, B., Kamat, P. V., "TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide", ACS Nano, Vol. 2, No. 7, (2008), 1487-1491. https://doi.org/10.1021/nn800251f
  38. Yang, S., Lohe, M. R., Müllen, K., Feng, X., "New-generation graphene from electrochemical approaches: production and applications", Advanced Materials, Vol. 28, No. 29, (2016), 6213-6221. https://doi.org/10.1002/adma.201505326
  39. Munasir, N., Kusumawati, R. P., Kusumawati, D. H., Supardi, Z. A. I., Taufiq, A., Darminto, D., "Characterization of Fe3O4/rGO composites from natural sources: application for dyes color degradation in aqueous solution", International Journal of Engineering, Vol. 33, No. 1, (2020), 18-27. https://doi.org/10.5829/ije.2020.33.01a.03
  40. Mohammadzadeh, A., Mazaheri, M., Sedighian, A., Ghanbari, H., Simchi, A., "Composites of reduced graphene oxide/nickel submicrorods for non-enzymatic electrochemical biosensing: Application to amperometric glucose detection", Journal of The Electrochemical Society, Vol. 167, No. 8, (2020), 087513. https://doi.org/10.1149/1945-7111/ab91c5
  41. Vanzo, D., Bratko, D., Luzar, A., "Wettability of pristine and alkyl-functionalized graphane", The Journal of Chemical Physics, Vol. 137, No. 3, (2012), 034707. https://doi.org/10.1063/1.4732520
  42. Inagaki, M., Kang, F., "Graphene derivatives: Graphane, fluorographene, graphene oxide, graphyne and graphdiyne", Journal of Materials Chemistry A, Vol. 2, No. 33, (2014), 13193-13206. https://doi.org/10.1039/C4TA01183J
  43. Son, J., Lee, S., Kim, S. J., Park, B. C., Lee, H. -K., Kim, S., Kim, J. H., Hong, B. H., Hong, J., "Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor", Nature Communications, Vol. 7, No. 1, (2016), 13261. https://doi.org/10.1038/ncomms13261
  44. Nair, R. R., Ren, W., Jalil, R., Riaz, I., Kravets, V. G., Britnell, L., Blake, P., Schedin, F., Mayorov, A. S., Yuan, S., Katsnelson, M. I., Cheng, H. -M., Strupinski, W., Bulusheva, L. G., Okotrub, A. V., Grigorieva, I. V., Grigorenko, A. N., Novoselov, K. S., Geim, A. K., "Fluorographene: A two-dimensional counterpart of teflon", Small, Vol. 6, No. 24, (2010), 2877-2884. https://doi.org/10.1002/smll.201001555
  45. Hong, X., Cheng, S. H., Herding, C., Zhu, J., "Colossal negative magnetoresistance in dilute fluorinated graphene", Physical Review B, Vol. 83, No. 8, (2011), 085410. https://doi.org/10.1103/PhysRevB.83.085410
  46. Chang, H., Cheng, J., Liu, X., Gao, J., Li, M., Li, J., Tao, X., Ding, F., Zheng, Z., "Facile synthesis of wide-bandgap fluorinated graphene semiconductors", Chemistry – A European Journal, Vol. 17, No. 32, (2011), 8896-8903. https://doi.org/10.1002/chem.201100699
  47. Paupitz, R., Autreto, P. A. S., Legoas, S. B., Srinivasan, S. G., van Duin, A. C. T., Galvão, D. S., "Graphene to fluorographene and fluorographane: A theoretical study", Nanotechnology, Vol. 24, No. 3, (2012), 035706. https://doi.org/10.1088/0957-4484/24/3/035706
  48. Chronopoulos, D. D., Bakandritsos, A., Pykal, M., Zbořil, R., Otyepka, M., "Chemistry, properties, and applications of fluorographene", Applied Materials Today, Vol. 9, (2017), 60-70. https://doi.org/10.1016/j.apmt.2017.05.004
  49. Jia, Z., Li, Y., Zuo, Z., Liu, H., Huang, C., Li, Y., "Synthesis and properties of 2D carbon—graphdiyne", Accounts of Chemical Research, Vol. 50, No. 10, (2017), 2470-2478. https://doi.org/10.1021/acs.accounts.7b00205
  50. Li, J., Gao, X., Zhu, L., Ghazzal, M. N., Zhang, J., Tung, C. H., Wu, L.Z., "Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications", Energy & Environmental Science, Vol. 13, No. 5, (2020), 1326-1346. https://doi.org/10.1039/C9EE03558C
  51. Li, G., Li, Y., Liu, H., Guo, Y., Li, Y., Zhu, D., "Architecture of graphdiyne nanoscale films", Chemical Communications, Vol. 46, No. 19, (2010), 3256-3258. https://doi.org/10.1039/B922733D
  52. Qian, X., Liu, H., Huang, C., Chen, S., Zhang, L., Li, Y., Wang, J., Li, Y., "Self-catalyzed growth of large-area nanofilms of two-dimensional carbon", Scientific Reports, Vol. 5, No. 1, (2015), 7756. https://doi.org/10.1038/srep07756
  53. Pari, S., Cuéllar, A., Wong, B. M., "Structural and electronic properties of graphdiyne carbon nanotubes from large-scale DFT calculations", The Journal of Physical Chemistry C, Vol. 120, No. 33, (2016), 18871-18877. https://doi.org/10.1021/acs.jpcc.6b05265
  54. Zhou, J., Gao, X., Liu, R., Xie, Z., Yang, J., Zhang, S., Zhang, G., Liu, H., Li, Y., Zhang, J., Liu, Z., "Synthesis of graphdiyne nanowalls using acetylenic coupling reaction", Journal of the American Chemical Society, Vol. 137, No. 24, (2015), 7596-7599., https://doi.org/10.1021/jacs.5b04057
  55. Qian, X., Ning, Z., Li, Y., Liu, H., Ouyang, C., Chen, Q., Li, Y., "Construction of graphdiyne nanowires with high-conductivity and mobility", Dalton Transactions, Vol. 41, No. 3, (2012), 730-733. https://doi.org/10.1039/C1DT11641J
  56. Xiao, J., Shi, J., Liu, H., Xu, Y., Lv, S., Luo, Y., Li, D., Meng, Q., Li, Y., "Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material", Advanced Energy Materials, Vol. 5, No. 8, (2015), 1401943. https://doi.org/10.1002/aenm.201401943
  57. Peng, Q., Dearden, A. K., Crean, J., Han, L., Liu, S., Wen, X., De, S., "New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology", Nanotechnology, Science and Applications, Vol. 7, No. 2, (2014), 1-29. https://doi.org/10.2147/S40324
  58. Kim, B. G., Choi, H. J., "Graphyne: Hexagonal network of carbon with versatile Dirac cones", Physical Review B, Vol. 86, No. 11, (2012), 115435. https://doi.org/10.1103/PhysRevB.86.115435
  59. Pan, L. D., Zhang, L. Z., Song, B. Q., Du, S. X., Gao, H. -J., "Graphyne- and graphdiyne-based nanoribbons: Density functional theory calculations of electronic structures", Applied Physics Letters, Vol. 98, No. 17, (2011), 173102. https://doi.org/10.1063/1.3583507
  60. Kang, J., Li, J., Wu, F., Li, S. -S., Xia, J. -B., "Elastic, electronic, and optical properties of two-dimensional graphyne sheet", The Journal of Physical Chemistry C, Vol. 115, No. 42, (2011), 20466-20470. https://doi.org/10.1021/jp206751m
  61. Zhang, Y. Y., Pei, Q. X., Wang, C. M., "Mechanical properties of graphynes under tension: A molecular dynamics study", Applied Physics Letters, Vol. 101, No. 8, (2012), 081909. https://doi.org/10.1063/1.4747719
  62. Zhou, J., Sun, Q., "How to fabricate a semihydrogenated graphene sheet? A promising strategy explored", Applied Physics Letters, Vol. 101, No. 7, (2012), 073114. https://doi.org/10.1063/1.4746756
  63. Fiori, G., Lebègue, S., Betti, A., Michetti, P., Klintenberg, M., Eriksson, O., Iannaccone, G., "Simulation of hydrogenated graphene field-effect transistors through a multiscale approach", Physical Review B, Vol. 82, No. 15, (2010), 153404. https://doi.org/10.1103/PhysRevB.82.153404
  64. Wu, M., Burton, J. D., Tsymbal, E. Y., Zeng, X. C., Jena, P., "Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials", Physical Review B, Vol. 87, No. 8, (2013), 081406. https://doi.org/10.1103/PhysRevB.87.081406
  65. Reddy, C. D., Zhang, Y. W., Shenoy, V. B., "Patterned graphone—A novel template for molecular packing", Nanotechnology, Vol. 23, No. 16, (2012), 165303. https://doi.org/10.1088/0957-4484/23/16/165303
  66. Zeng, H., Cui, X., "An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides", Chemical Society Reviews, Vol. 44, No. 9, (2015), 2629-2642. https://doi.org/10.1039/C4CS00265B
  67. Cotrufo, M., Sun, L., Choi, J., Alù, A., Li, X., "Enhancing functionalities of atomically thin semiconductors with plasmonic nanostructures", Nanophotonics, Vol. 8, No. 4, (2019), 577-598. https://doi.org/10.1515/nanoph-2018-0185
  68. Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. -Y., Galli, G., Wang, F., "Emerging photoluminescence in monolayer MoS2", Nano Letters, Vol. 10, No. 4, (2010), 1271-1275. https://doi.org/10.1021/nl903868w
  69. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A., "Ultrasensitive photodetectors based on monolayer MoS2", Nature Nanotechnology, Vol. 8, No. 7, (2013), 497-501. https://doi.org/10.1038/nnano.2013.100
  70. Bertolazzi, S., Brivio, J., Kis, A., "Stretching and breaking of ultrathin MoS2", ACS Nano, Vol. 5, No. 12, (2011), 9703-9709. https://doi.org/10.1021/nn203879f
  71. Castellanos-Gomez, A., Poot, M., Steele, G. A., van der Zant, H. S. J., Agraït, N., Rubio-Bollinger, G., "Elastic properties of freely suspended MoS2 nanosheets", Advanced Materials, Vol. 24, No. 6, (2012), 772-775. https://doi.org/10.1002/adma.201103965
  72. Xu, M., Liang, T., Shi, M., Chen, H., "Graphene-like two-dimensional materials", Chemical Reviews, Vol. 113, No. 5, (2013), 3766-3798. https://doi.org/10.1021/cr300263a
  73. Rahmani Taji Boyuk, M. R., Ghanbari, H., Simchi, A., Maghsoumi, A., "Seedless growth of two-dimensional disc-shaped WS2 layers by chemical vapor deposition", Materials Chemistry and Physics, Vol. 257, (2021), 123837. https://doi.org/10.1016/j.matchemphys.2020.123837
  74. Rahmani Taji Boyuk, M. R., Sovizi, S., Ghanbari, H., Simchi, A., Aboudzadeh, N., "Developing seedless growth of atomically thin semiconductor layers: Application to transition metal dichalcogenides", Ceramics International, Vol. 44, No. 13, (2018), 15795-15803. https://doi.org/10.1016/j.ceramint.2018.05.256
  75. Barua, S., Dutta, H. S., Gogoi, S., Devi, R., Khan, R., "Nanostructured MoS2-based advanced biosensors: A review", ACS Applied Nano Materials, Vol. 1, No. 1, (2018), 2-25. https://doi.org/10.1021/7b00157
  76. Syu, Y. -C., Hsu, W. -E., Lin, C. -T., "Review—Field-effect transistor biosensing: Devices and clinical applications", ECS Journal of Solid State Science and Technology, Vol. 7, No. 7, (2018), 3196-3207. https://doi.org/10.1149/2.0291807jss
  77. Kalantar-zadeh, K., Ou, J. Z., Daeneke, T., Mitchell, A., Sasaki, T., Fuhrer, M. S., "Two dimensional and layered transition metal oxides", Applied Materials Today, Vol. 5, (2016), 73-89. https://doi.org/10.1016/j.apmt.2016.09.012
  78. Osada, M., Sasaki, T., "Exfoliated oxide nanosheets: New solution to nanoelectronics", Journal of Materials Chemistry, Vol. 19, No. 17, (2009), 2503-2511. https://doi.org/10.1039/B820160A
  79. Yang, T., Song, T. T., Callsen, M., Zhou, J., Chai, J. W., Feng, Y. P., Wang, S. J., Yang, M., "Atomically thin 2D transition metal oxides: Structural reconstruction, interaction with substrates, and potential applications", Advanced Materials Interfaces, Vol. 6, No. 1, (2019). https://doi.org/10.1002/admi.201801160
  80. Osada, M., Sasaki, T., "Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks", Advanced Materials, Vol. 24, No. 2, (2012), 210-228. https://doi.org/10.1002/adma.201103241
  81. Green, M. A., Ho-Baillie, A., Snaith, H. J., "The emergence of perovskite solar cells", Nature Photonics, Vol. 8, No. 7, (2014), 506-514. https://doi.org/10.1038/nphoton.2014.134
  82. Chimene, D., Alge, D.L., Gaharwar, A. K., "Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects", Advanced Materials, Vol. 27, No. 45, (2015), 7261-7284. https://doi.org/10.1002/adma.201502422
  83. Takada, K., Sakurai, H., Takayama-Muromachi, E., Izumi, F., Dilanian, R. A., Sasaki, T., "Superconductivity in two-dimensional CoO2 layers", Nature, Vol. 422, No. 6927, (2003), 53-55. https://doi.org/10.1038/nature01450
  84. Damascelli, A., Hussain, Z., Shen, Z. -X., "Angle-resolved photoemission studies of the cuprate superconductors", Reviews of Modern Physics, Vol. 75, No. 2, (2003), 473-541. https://doi.org/10.1103/RevModPhys.75.473
  85. Liang, L., Li, K., Xiao, C., Fan, S., Liu, J., Zhang, W., Xu, W., Tong, W., Liao, J., Zhou, Y. Ye, B., "Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device", Journal of the American Chemical Society, Vol. 137. No. 8, (2015), 3102-3108. https://doi.org/10.1021/jacs.5b00021
  86. Ameri, M., Yoosefi, M., "Power and fresh water production by solar energy, fuel cell, and reverse osmosis desalination", Vol. 3, No. 1, (2016), 25-34. https://doi.org/10.30501/jree.2016.70075
  87. Zhou, C., Lin, H., He, Q., Xu, L., Worku, M., Chaaban, M., Lee, S., Shi, X., Du, M. -H., Ma, B., "Low dimensional metal halide perovskites and hybrids", Materials Science and Engineering: R: Reports, Vol. 137, No. (2019), 38-65. https://doi.org/10.1016/j.mser.2018.12.001
  88. Azimi-Nam, S., Farhani, F., "Effect of temperature on electrical parameters of phosphorous spin–on diffusion of polysilicon solar cells", Journal of Renewable Energy and Environment (JREE), Vol. 4, No. 1, (2017), 41-45. https://doi.org/10.30501/jree.2017.70105
  89. Grätzel, M., "The rise of highly efficient and stable perovskite solar cells", Accounts of Chemical Research, Vol. 50, No. 3, (2017), 487-491. https://doi.org/10.1021/acs.accounts.6b00492
  90. Saparov, B., Mitzi, D. B., "Organic–inorganic perovskites: Structural versatility for functional materials design", Chemical Reviews, Vol. 116, No. 7, (2016), 4558-4596. https://doi.org/10.1021/acs.chemrev.5b00715
  91. Dunlap-Shohl, W. A., Zhou, Y., Padture, N. P., Mitzi, D. B., "Synthetic approaches for halide perovskite thin films", Chemical Reviews, Vol. 119, No. 5, (2019), 3193-3295. https://doi.org/10.1021/acs.chemrev.8b00318
  92. Akhtar, J., Aamir, M., Sher, M., "Chapter 2-Organometal lead halide perovskite", In Thomas, S., Thankappan, A. (ed.), Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation, Academic Press, (2018), 25-42. https://doi.org/10.1016/B978-0-12-812915-9.00002-2
  93. Zhang, W., Liu, X., He, B., Zhu, J., Li, X., Shen, K., Chen, H., Duan, Y., Tang, Q., "Enhanced efficiency of air-stable CsPbBr3 perovskite solar cells by defect dual-passivation and grain size enlargement with multifunctional additive", ACS Applied Materials & Interfaces, Vol. 12, No. 32, (2020), 36092-36101. https://doi.org/10.1021/acsami.0c08827
  94. Zhang, F., Zhu, K., "Additive engineering for efficient and stable perovskite solar cells", Advanced Energy Materials, Vol. 10, No. 13, (2020), 1902579. https://doi.org/10.1002/aenm.201902579
  95. Zhang, F., Lu, H., Tong, J., Berry, J. J., Beard, M. C., Zhu, K., "Advances in two-dimensional organic–inorganic hybrid perovskites", Energy & Environmental Science, Vol. 13, No. 4, (2020), 1154-1186. https://doi.org/10.1039/C9EE03757H
  96. Ortiz-Cervantes, C., Carmona-Monroy, P., Solis-Ibarra, D., "Two-dimensional halide perovskites in solar cells: 2D or not 2D?", ChemSusChem, Vol. 12, No. 8, (2019), 1560-1575. https://doi.org/10.1002/201802992
  97. Sichert, J. A., Tong, Y., Mutz, N., Vollmer, M., Fischer, S., Milowska, K. Z., García Cortadella, R., Nickel, B., Cardenas-Daw, C., Stolarczyk, J. K., Urban, A. S., Feldmann, J., "Quantum size effect in organometal halide perovskite nanoplatelets", Nano Letters, Vol. 15, No. 10, (2015), 6521-6527. https://doi.org/10.1021/acs.nanolett.5b02985
  98. Reshmi Varma, P. C., "Chapter 7-Low-dimensional perovskites", In Thomas, S., Thankappan, A. (ed.), Perovskite Photovoltaics, Academic Press, (2018), 197-229. https://doi.org/10.1016/C2016-0-03790-7
  99. Niu, W., Eiden, A., Prakash, G. V., Baumberg, J. J., "Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors", Applied Physics Letters, Vol. 104, No. 17, (2014). https://doi.org/10.1063/1.4874846
  100. Wang, Y., Shi, Y., Xin, G., Lian, J., Shi, J., "Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide", Crystal Growth & Design, Vol. 15, No. 10, (2015), 4741-4749. https://doi.org/10.1021/acs.cgd.5b00949
  101. Mao, L., Stoumpos, C. C., Kanatzidis, M. G., "Two-dimensional hybrid halide perovskites: Principles and promises", Journal of the American Chemical Society, Vol. 141, No. 3, (2019), 1171-1190. https://doi.org/10.1021/jacs.8b10851
  102. Mao, L., Kennard, R. M., Traore, B., Ke, W., Katan, C., Even, J., Chabinyc, M. L., Stoumpos, C. C., Kanatzidis, M. G., "Seven-layered 2D hybrid lead iodide perovskites", Chem, Vol. 5, No. 10, (2019), 2593-2604. https://doi.org/10.1016/j.chempr.2019.07.024
  103. Mao, L., Ke, W., Pedesseau, L., Wu, Y., Katan, C., Even, J., Wasielewski, M. R., Stoumpos, C. C., Kanatzidis, M. G., "Hybrid Dion–Jacobson 2D lead iodide perovskites", Journal of the American Chemical Society, Vol. 140, No. 10, (2018), 3775-3783. https://doi.org/10.1021/jacs.8b00542
  104. Soe, C. M. M., Stoumpos, C. C., Kepenekian, M., Traoré, B., Tsai, H., Nie, W., Wang, B., Katan, C., Seshadri, R., Mohite, A. D., Even, J., Marks, T. J., Kanatzidis, M. G., "New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance", Journal of the American Chemical Society, Vol. 139, No. 45, (2017), 16297-16309. https://doi.org/10.1021/jacs.7b09096
  105. Lan, C., Zhou, Z., Wei, R., Ho, J. C., "Two-dimensional perovskite materials: From synthesis to energy-related applications", Materials Today Energy, Vol. 11, (2019), 61-82, https://doi.org/10.1016/j.mtener.2018.10.008
  106. Zhao, S., Lan, C., Li, H., Zhang, C., Ma, T., "Aurivillius halide perovskite: A new family of two-dimensional materials for optoelectronic applications", The Journal of Physical Chemistry C, Vol. 124, No. 3, (2020), 1788-1793. https://doi.org/10.1021/acs.jpcc.9b08450
  107. Liu, Y., Akin, S., Pan, L., Uchida, R., Arora, N., Milić, J. V., Hinderhofer, A., Schreiber, F., Uhl, A. R., Zakeeruddin, S. M., Hagfeldt, A., Dar, M. I., Grätzel, M., "Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22 %", Science Advances, Vol. 5, No. 6, (2019), 2543. https://doi.org/10.1126/sciadv.aaw2543
  108. Antonatos, N., Ghodrati, H., Sofer, Z., "Elements beyond graphene: Current state and perspectives of elemental monolayer deposition by bottom-up approach", Applied Materials Today, Vol. 18, (2020). https://doi.org/10.1002/smll.201402041
  109. Zhang, S., Guo, S., Chen, Z., Wang, Y., Gao, H., Gómez-Herrero, J., Ares, P., Zamora, F., Zhu, Z., Zeng, H., "Recent progress in 2D group-VA semiconductors: from theory to experiment", Chemical Society Reviews, Vol. 47, No. 3, (2018), 982-1021. https://doi.org/10.1039/C7CS00125H
  110. Zhang, S., Xie, M., Li, F., Yan, Z., Li, Y., Kan, E., Liu, W., Chen, Z., Zeng, H., "Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities", Angewandte Chemie, Vol. 128, No. 5, (2016), 1698-1701. https://doi.org/10.1002/ange.201507568
  111. Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J. E., Sumanasekera, G., Jasinski, J. B., "Recent advances in synthesis, properties, and applications of phosphorene", npj 2D Materials and Applications, Vol. 1, No. 1, (2017), 5. https://doi.org/10.1038/s41699-017-0007-5
  112. Dai, J., Zeng, X. C., "Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells", The Journal of Physical Chemistry Letters, Vol. 5, No. 7, (2014), 1289-1293. https://doi.org/ 10.1021/jz500409m
  113. Zhu, W., Yogeesh, M. N., Yang, S., Aldave, S. H., Kim, J. -S., Sonde, S., Tao, L., Lu, N., Akinwande, D., "Flexible black phosphorus ambipolar transistors, circuits and AM demodulator", Nano Letters, Vol. 15, No. 3, (2015), 1883-1890. https://doi.org/10.1021/nl5047329
  114. Vishnoi, P., Mazumder, M., Pati, S. K., Rao, C. N. R., "Arsenene nanosheets and nanodots", New Journal of Chemistry, Vol. 42, No. 17, (2018), 14091-14095. https://doi.org/10.1039/c8nj03186j
  115. Singh, D., Gupta, S. K., Sonvane, Y., Lukačević, I., "Antimonene: A monolayer material for ultraviolet optical nanodevices", Journal of Materials Chemistry C, Vol. 4, No. 26, (2016), 6386-6390. https://doi.org/10.1039/c6tc01913g
  116. Wang, X., Song, J., Qu, J., "Antimonene: From experimental preparation to practical application", Angewandte Chemie International Edition, Vol. 58, No. 6, (2019), 1574-1584. https://doi.org/10.1002/anie.201808302
  117. Wang, X., He, J., Zhou, B., Zhang, Y., Wu, J., Hu, R., Liu, L., Song, J., Qu, J., "Bandgap-tunable preparation of smooth and large two-dimensional antimonene", Angewandte Chemie International Edition, Vol. 57, No. 28, (2018), 8668-8686. https://doi.org/10.1002/anie.201804886
  118. Liu, X., Zhang, S., Guo, S., Cai, B., Yang, S. A., Shan, F., Pumera, M., Zeng, H., "Advances of 2D bismuth in energy sciences", Chemical Society Reviews, Vol. 49, No. 1, (2020), 263-285. https://doi.org/10.1039/c9cs00551j
  119. Takagi, N., Lin, C. -L., Kawahara, K., Minamitani, E., Tsukahara, N., Kawai, M., Arafune, R., "Silicene on Ag(111): Geometric and electronic structures of a new honeycomb material of Si", Progress in Surface Science, Vol. 90, No. 1, (2015), 1-20. https://doi.org/10.1016/j.progsurf.2014.10.001
  120. Ding, Y., Wang, Y., "Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: the various Buckled structures and versatile electronic properties", The Journal of Physical Chemistry C, Vol. 117, No. 35, (2013), 18266-18278. https://doi.org/10.1021/jp407666m
  121. Vishnoi, P., Pramoda, K., Rao, C. N. R., "2D elemental nanomaterials beyond graphene", ChemNanoMat, Vol. 5, No. 9, (2019), 1062-1091. https://doi.org/10.1002/cnma.201900176
  122. Jose, D., Datta, A., "Structures and chemical properties of silicene: Unlike graphene", Accounts of Chemical Research, Vol. 47, No. 2, (2014), 593-602. https://doi.org/10.1021/ar400180e
  123. Kawahara, K., Shirasawa, T., Arafune, R., Lin, C. L., Takahashi, T., Kawai, M., Takagi, N., "Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction", Surface Science, Vol. 623, (2014), 25-28. https://doi.org/10.1016/j.susc.2013.12.013
  124. Tao, , Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D., "Silicene field-effect transistors operating at room temperature", Nature Nanotechnology, Vol. 10, No. 3, (2015), 227-231. https://doi.org/10.1038/nnano.2014.325
  125. Wang, M., Liu, L., Liu, C. -C., Yao, Y., "van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls", Physical Review B, Vol. 93, No. 15, (2016), 155412. https://doi.org/10.1103/PhysRevB.93.155412
  126. Bianco, E., Butler, S., Jiang, S., Restrepo, O. D., Windl, W., Goldberger, J. E., "Stability and exfoliation of germanane: A germanium graphane analogue", ACS Nano, Vol. 7, No. 5, (2013), 4414-4421. https://doi.org/10.1021/nn4009406
  127. Madhushankar, B. N., Kaverzin, A., Giousis, T., Potsi, G., Gournis, D., Rudolf, P., Blake, G. R., van der Wal, C. H., van Wees, B. J., "Electronic properties of germanane field-effect transistors", 2D Materials, Vol. 4, No. 2, (2017), 021009. https://doi.org/10.1088/2053-1583/aa57fd
  128. Yuhara, J., Shimazu, H., Ito, K., Ohta, A., Araidai, M., Kurosawa, M., Nakatake, M., Le Lay, G., "Germanene epitaxial growth by segregation through Ag(111) thin films on Ge(111)", ACS Nano, Vol. 12, No. 11, (2018), 11632-11637. https://doi.org/10.1021/acsnano.8b07006
  129. Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A., Le Lay, G., "Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene", New Journal of Physics, Vol. 16, No. 9, (2014), 095002. https://doi.org/10.1088/1367-2630/16/9/095002
  130. Rahman, M. S., Nakagawa, T., Mizuno, S., "Germanene: Experimental study for graphene like two dimensional germanium", Evergreen, Vol. 1, No. 2, (2014), 25-29. https://doi.org/10.5109/1495160
  131. Özçelik, V. O., Durgun, E., Ciraci, S., "New phases of germanene", Journal of Physical Chemistry Letters, Vol. 5, No. 15, (2014), 2694-2699. https://doi.org/10.1021/jz500977v
  132. Sahoo, S. K., Wei, K. H., "A perspective on recent advances in 2D stanene nanosheets", Advanced Materials Interfaces, Vol. 6, No. 18, (2019). https://doi.org/10.1002/admi.201900752
  133. Lyu, J. K., Zhang, S. F., Zhang, C. W., Wang, P. J., "Stanene: A promising material for new electronic and spintronic applications", Annalen der Physik, Vol. 531, No. 10, (2019). https://doi.org/10.1002/andp.201900017
  134. Wang, A., Wang, C., Fu, L., Wong-Ng, W., Lan, Y., "Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs", Nano-Micro Letters, Vol. 9, No. 4, (2017), 47. https://doi.org/10.1007/s40820-017-0148-2
  135. Kroke, E., Schwarz, M., Horath-Bordon, E., Kroll, P., Noll, B., Norman, A. D., "Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures", New Journal of Chemistry, Vol. 26, No. 5, (2002), 508-512. https://doi.org/10.1039/B111062B
  136. Ong, W. -J., Tan, L. -L., Ng, Y. H., Yong, S. -T., Chai, S. -P., "Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer To achieving sustainability?", Chemical Reviews, Vol. 116, No. 12, (2016), 7159-7329. https://doi.org/10.1021/acs.chemrev.6b00075
  137. Sun, J., Fu, Y., He, G., Sun, X., Wang, X., "Green Suzuki–Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride", Applied Catalysis B: Environmental, Vol. 165, (2015), 661-667. https://doi.org/10.1016/j.apcatb.2014.10.072
  138. Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J. -O., Schlögl, R., Carlsson, J. M., "Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts", Journal of Materials Chemistry, Vol. 18, No. 41, (2008), 4893-4908. https://doi.org/10.1039/B800274F
  139. Cheng, N., Jiang, P., Liu, Q., Tian, J., Asiri, A. M., Sun, X., "Graphitic carbon nitride nanosheets: One-step, high-yield synthesis and application for Cu2+ detection", Analyst, Vol. 139, No. 20, (2014), 5065-5068. https://doi.org/10.1039/C4AN00914B
  140. Cavani, F., Trifirò, F., Vaccari, A., "Hydrotalcite-type anionic clays: Preparation, properties and applications", Catalysis Today, Vol. 11, No. 2, (1991), 173-301. https://doi.org/10.1016/0920-5861(91)80068-K
  141. Moraes, J. D. D., Bertolino, S. R. A., Cuffini, S. L., Ducart, D. F., Bretzke, P. E., Leonardi, G. R., "Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—A review", International Journal of Pharmaceutics, Vol. 534, No. 1, (2017), 213-219. https://doi.org/10.1016/j.ijpharm.2017.10.031
  142. Zeaiean Firouzabadi, P., Ghanbari, H., Mahmoudi, N., Haramshahi, S. M. A., Javadpour, J., "Synthesis of nanobentonite–poly(vinyl alcohol)–bacterial cellulose nanocomposite by electrospinning for wound healing applications", Physica Status Solidi (a), Vol. 217, No. 6, (2020), 1900536. https://doi.org/10.1002/pssa.201900536
  143. Awasthi, A., Jadhao, P., Kumari, K., "Clay nano-adsorbent: structures, applications and mechanism for water treatment", SN Applied Sciences, Vol. 1, No. 9, (2019), 1076. https://doi.org/10.1007/s42452-019-0858-9
  144. Ruzicka, B., Zulian, L., Ruocco, G., "More on the phase diagram of laponite", Langmuir, Vol. 22, No. 3, (2006), 1106-1111. https://doi.org/10.1021/la0524418
  145. Fripiat, J., Cases, J., Francois, M., Letellier, M., "Thermodynamic and microdynamic behavior of water in clay suspensions and gels", Journal of Colloid and Interface Science, Vol. 89, No. 2, (1982), 378-400. https://doi.org/10.1016/0021-9797(82)90191-6
  146. Li, Y., Liang, M., Dou, X., Feng, C., Pang, J., Cheng, X., Liu, H., Liu, T., Wang, Y., Chen, X., "Development of alginate hydrogel/gum Arabic/gelatin based composite capsules and their application as oral delivery carriers for antioxidant", International Journal of Biological Macromolecules, Vol. 132, (2019), 1090-1097. https://doi.org/10.1016/j.ijbiomac.2019.03.103
  147. Ghanbari, H., Shahmohamadi, N., Sarpoolaky, H., "Different roles of carbonate additives on hexagonal boron nitride microstructure prepared from urea and boric acid", Proceedings of 15th Annual Congress on Materials Research and Technology, France, Paris, (2018).  (https://www.hilarispublisher.com/proceedings/different-roles-of-carbonate-additives-on-hexagonal-boron-nitride-microstructure-prepared-from-urea-and-boric-acid-10087.html)
  148. Wang, J., Ma, F., Sun, M., "Graphene, hexagonal boron nitride, and their heterostructures: properties and applications", RSC Advances, Vol. 7, No. 27, (2017), 16801-16822. https://doi.org/10.1039/C7RA00260B
  149. Lee, G. -H., Yu, Y. -J., Cui, X., Petrone, N., Lee, C. -H., Choi, M. S., Lee, D. -Y., Lee, C., Yoo, W. J., Watanabe, K., Taniguchi, T., Nuckolls, C., Kim, P., Hone, J., "Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures", ACS Nano, Vol. 7, No. 9, (2013), 7931-7936. https://doi.org/10.1021/nn402954e
  150. Decker, R., Wang, Y., Brar, V. W., Regan, W., Tsai, H. -Z., Wu, , Gannett, W., Zettl, A., Crommie, M. F., "Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy", Nano Letters, Vol. 11, No. 6, (2011), 2291-2295. https://doi.org/10.1021/nl2005115
  151. Peng, J., Wang, S., Zhang, P. -H., Jiang, L. -P., Shi, J. -J., Zhu, J. -J., "Fabrication of graphene quantum dots and hexagonal boron nitride nanocomposites for fluorescent cell imaging", Journal of Biomedical Nanotechnology, Vol. 9, No. 10, (2013), 1679-1685. https://doi.org/10.1166/jbn.2013.1663
  152. Weng, Q., Wang, B., Wang, X., Hanagata, N., Li, X., Liu, D., Wang, X., Jiang, X., Bando, Y., Golberg, D., "Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery", ACS Nano, Vol. 8, No. 6, (2014), 6123-6130. https://doi.org/10.1021/nn5014808
  153. Angizi, S., Hatamie, A., Ghanbari, H., Simchi, A., "Mechanochemical green synthesis of exfoliated edge-functionalized boron nitride quantum dots: Application to vitamin C sensing through hybridization with gold electrodes", ACS Applied Materials & Interfaces, Vol. 10, No. 34, (2018), 28819-28827. https://doi.org/10.1021/acsami.8b07332
  154. Azadmanjiri, J., Berndt, C. C., Wang, J., Kapoor, A., Srivastava, V. K., "Nanolaminated composite materials: Structure, interface role and applications", RSC Advances, Vol. 6, No. 111, (2016), 109361-109385. https://doi.org/10.1039/c6ra20050h
  155. Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B. C., Hultman, L., Kent, P. R. C., Gogotsi, Y., Barsoum, M. W., "Two-dimensional, ordered, double transition metals carbides (MXenes)", ACS Nano, Vol. 9, No. 10, (2015), 9507-9516. https://doi.org/10.1021/acsnano.5b03591
  156. Ghidiu, M., Lukatskaya, M. R., Zhao, M. -Q., Gogotsi, Y., Barsoum, M. W., "Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance", Nature, Vol. 516, No. 7529, (2014), 78-81. https://doi.org/10.1038/nature13970
  157. Ren, C. E., Zhao, M. Q., Makaryan, T., Halim, J., Boota, M., Kota, S., Anasori, B., Barsoum, M. W., Gogotsi, Y., "Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-Ion storage", ChemElectroChem, Vol. 3, No. 5, (2016), 689-693. https://doi.org/1002/celc.201600059
  158. Ren, C. E., Hatzell, K. B., Alhabeb, M., Ling, Z., Mahmoud, K. A., Gogotsi, Y., "Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes", The Journal of Physical Chemistry Letters, Vol. 6, No. 20, (2015), 4026-4031. https://doi.org/10.1021/acs.jpclett.5b01895
  159. Xie, X., Zhao, M. -Q., Anasori, B., Maleski, K., Ren, C. E., Li, J., Byles, B. W., Pomerantseva, E., Wang, G., Gogotsi, Y., "Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices", Nano Energy, Vol. 26, (2016), 513-523. https://doi.org/10.1016/j.nanoen.2016.06.005
  160. Sinha, A., Mugo, S. M., Chen, J., Lokesh, K. S., "MXene-based sensors and biosensors: Next-generation detection platforms, In Handbook of nanomaterials in analytical chemistry", In Mustansar Hussain, C. (ed.), Nanomaterials in Analytical Chemistry: Modern Trends in Analysis, Elsevier, (2020), 361-372. https://doi.org/10.1016/B978-0-12-816699-4.00014-1
  161. Duan, H., Yan, N., Yu, R., Chang, C. -R., Zhou, G., Hu, H. -S., Rong, H., Niu, Z., Mao, J., Asakura, H., Tanaka, T., Dyson, P. J., Li, J., Li, Y., "Ultrathin rhodium nanosheets", Nature Communications, Vol. 5, No. 1, (2014), 3093. https://doi.org/10.1038/ncomms4093
  162. Yuhara, J., Schmid, M., Varga, P., "Two-dimensional alloy of immiscible metals: Single and binary monolayer films of Pb and Sn on Rh(111)", Physical Review B, Vol. 67, No. 19, (2003), 195407. https://doi.org/10.1103/PhysRevB.67.195407
  163. Abdelhafiz, A., Vitale, A., Buntin, P., deGlee, B., Joiner, C., Robertson, A., Vogel, E. M., Warner, J., Alamgir, F. M., "Epitaxial and atomically thin graphene–metal hybrid catalyst films: the dual role of graphene as the support and the chemically-transparent protective cap", Energy & Environmental Science, Vol. 11, No. 6, (2018), 1610-1616. https://doi.org/10.1039/C8EE00539G