نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی پزشکی، دانشگاه صنعتی اصفهان ، اصفهان، اصفهان، ایران

2 دانشیار، گروه مهندسی پزشکی، واحد یزد، دانشگاه آزاد اسلامی، یزد، یزد، ایران

3 کارشناسی ارشد، گروه مهندسی پزشکی، واحد یزد، دانشگاه آزاد اسلامی، یزد، یزد، ایران

چکیده

مهندسی بافت، با ارائه داربست‌هایی با قابلیت تحریک استخوان‌سازی، بستری مناسب را برای بازسازی و ترمیم بافت‌های استخوانی آسیب‌دیده فراهم می‌کند. در این مطالعه، داربست‌های پلی‌کاپرولاکتون (داربست A)، پلی‌کاپرولاکتون/کراتین (داربست B) و پلی‌کاپرولاکتون/کراتین تقویت‌شده با نانولوله‌های کربنی چنددیواره کربوکسیل‌دار (COOH-MWCNT) (داربست C)، به روش الکتروریسی، ساخته و تمایز استئوژنیک (Osteogenic) سریع سلول‌های بنیادی مزانشیمی و زیست‌کانی‌سازی در داربست‌ها بررسی شد. زیست‌فعالی داربست‌ها، با طیف‌سنجی پراش انرژی پرتو ایکس (EDS) و پلاسمای جفت‌ شده القایی-طیف‌سنجی نشر نوری (ICP-OES) و جذب پروتئین‌های ماتریکس خارج سلولی، با کیت سنجش پروتئین BCA ارزیابی شد. همچنین، تأثیر COOH-MWCNT بر رسوب کلسیم در روی سطح داربست‌ها در دو مقطع زمانی ۷ و ۱۴ روز، بررسی شد. شکل‌گیری لایه هیدروکسی آپاتیت روی سطح داربست C، قابلیت استخوان‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌زایی و زیست‌فعالی عالی داربست را نشان ‌داد. میزان جذب پروتئین روی سطح داربست‌های B و C، به‌ترتیب، ۳۲ و ۴۳ میکروگرم بر میلی‌متر مکعب اندازه‌‌گیری شد که نشانه رشد و تکثیربیشتر سلول‌های مزانشیمی در داربست C نسبت به داربست B بود. همچنین، رسوب  بالا کلسیم روی سطح داربست C  ، تمایز سلول‌های بنیادی مزانشیمی (Mesenchymal stem cells differentiate)  به سلول های استخوانی را در داربست نشان داد. نتایج این پژوهش نشان ‌داد که داربست پلی‌کاپرولاکتون/کراتین تقویت‌شده با COOH-MWCNT، دارای زیست‌فعالی و آب‌دوستی عالی و تمایز استئوژنیک سلول‌های بنیادی مزانشیمی بوده و می‌تواند گزینه مناسبی برای کاربرد در مهندسی بافت استخوان باشد.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Enhanced Biomineralization of Stem Cells and Adsorption of Extracellular Matrix Proteins on Bioactive Scaffold Reinforced with Carboxylated Multi-Walled Carbon Nanotubes

نویسندگان [English]

  • Marjan Mirhaj 1
  • Mahboobeh Mahmoodi 2
  • Seyed Amir Mirafzali 3
  • Mansoor Alizadeh 3
  • Mohammadreza Tavakoli 1

1 Ph. D. Student, Department of Biomedical Engineering, Isfahan University of Technology, Isfahan, Isfahan, Iran

2 Associate Professor, Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Yazd, IranDepartment of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.

3 M. Sc., Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Yazd, Iran

چکیده [English]

Tissue engineering creates a suitable substrate for the regeneration and repair of damaged bone tissue by providing scaffolds with the ability to stimulate bone formation. In this study, polycaprolactone (PCL) scaffold (scaffold A), PCL/keratin (Kr) scaffold (scaffold B), and PCL/Kr scaffold reinforced with carboxylated multi-walled carbon nanotubes (MWCNT-COOH) (scaffold C) were fabricated by electrospinning method and rapid osteogenic differentiation of mesenchymal stem cells and biomineralization on the scaffolds surface were evaluated. The bioactivity of scaffolds was investigated using energy dispersive x-ray spectroscopy (EDS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) and extracellular matrix proteins adsorption on the surface of scaffolds were also evaluated by BCA assay kit. Moreover, the effect of MWCNT-COOH on calcium deposition in the scaffolds were studied on days 7 and 14 of culture. The formation of hydroxyapatite layer on the scaffold C indicated the excellent osteoproductivity and bioactivity of scaffold. The amount of protein adsorption on the surface of scaffolds B and C was measured to be 32 μg/mm3 and 43 μg/mm3, respectively, which showed an increase in mesenchymal stem cells proliferation on the surface of scaffold C compared to the scaffold B. Also, high calcium deposition on the surface of scaffold C indicated mesenchymal stem cells differentiate into osteoblasts on the surface of scaffold. Therefore, the results of this study demonstrated that the PCL/Kr scaffold reinforced with MWCNT-COOH with excellent bioactivity, high protein adsorption, and osteogenic differentiation of mesenchymal stem cells can be a suitable candidate for bone tissue engineering applications.
 

کلیدواژه‌ها [English]

  • Multi-walled carbon nanotubes
  • cell differentiation
  • Mesenchymal stem cell
  • Bone scaffold
  • Biomineralization
  1. Cassidy, J. W., "Nanotechnology in the regeneration of complex tissues", Bone and Tissue Regeneration Insights, Vol. 5, (2014), BTRI. S12331. https://doi.org/10.4137/BTRI.S12331
  2. Lin, H., Sohn, J., Shen, H., Langhans, M. T., Tuan, R. S., "Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing", Biomaterials, Vol. 203, (2019), 96-110. https://doi.org/10.1016/j.biomaterials.2018.06.026
  3. Kulterer, B., Friedl, G., Jandrositz, A., Sanchez-Cabo, F., Prokesch, A., Paar, C., Scheideler, M., Windhager, R., Preisegger, K. H., Trajanoski, Z., "Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation", BMC Genomics, Vol. 8, No. 1, (2007), 1-15. https://doi.org/10.1186/1471-2164-8-70
  4. Li, X., Yu, X., Lin, Q., Deng, C., Shan, Z., Yang, M., Lin, S., "Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment", Journal of Molecular and Cellular Cardiology, 42, No. 2, (2007), 295-303. https://doi.org/10.1016/j.yjmcc.2006.07.002
  5. Zanini, C., Bruno, S., Mandili, G., Baci, D., Cerutti, F., Cenacchi, G., Izzi, L., Camussi, G., Forni, M., "Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype", PloS One, 6, No. 12, (2011), e28175. https://doi.org/10.1371/journal.pone.0028175
  6. Madhusoodan, A., Das, K., Mili, B., Kumar, K., Kumar, A., Saxena, A., Singh, P., Dutt, T., Bag, S., "In vitro proliferation and differentiation of canine bone marrow derived mesenchymal stem cells over hydroxyl functionalized CNT substrates", Biotechnology Reports, 24, (2019), e00387. https://doi.org/10.1016/j.btre.2019.e00387
  7. Huňáková, K., Hluchý, M., Špaková, T., Matejová, J., Mudroňová, D., Kuricová, M., Rosocha, J., Ledecký, V., "Study of bilateral elbow joint osteoarthritis treatment using conditioned medium from allogeneic adipose tissue-derived MSCs in Labrador retrievers", Research in Veterinary Science, 132, (2020), 513-520. https://doi.org/10.1016/j.rvsc.2020.08.004
  8. Nantavisai, S., Rodprasert, W., Pathanachai, K., Wikran, P., Kitcharoenthaworn, P., Smithiwong, S., Archasappawat, S., Sawangmake, C., "Simvastatin enhances proliferation and pluripotent gene expression by canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) in vitro", Heliyon, 5, No. 10, (2019), e02663. https://doi.org/10.1016/j.heliyon.2019.e02663
  9. Shen, C., Li, L., Feng, T., Li, J., Yu, M., Lu, Q., Li, H., "Dental pulp stem cells derived conditioned medium promotes angiogenesis in hindlimb ischemia", Tissue Engineering and Regenerative Medicine, 12, No. 1, (2015), 59-68. https://doi.org/10.1007/s13770-014-9053-7
  10. Kim, J., Ha, C., Rhim, J., Park, Y., Kim, M., Han, W., Lee, K., Lee, L., Park, H., "Different characteristics of MSC isolated from differentiated layers of chorionic membrane & trophoblastic layers of term placenta", Cytotherapy, 20, No. 5, (2018), S43. https://doi.org/10.1016/j.jcyt.2018.02.109
  11. Mueller, S. M., Glowacki, J., "Age‐related decline in the osteogenic potential of human bone marrow cells cultured in three‐dimensional collagen sponges", Journal of Cellular Biochemistry, 82, No. 4, (2001), 583-590. https://doi.org/10.1002/jcb.1174
  12. Rodríguez, J. P., Montecinos, L., Ríos, S., Reyes, P., Martínez, J., "Mesenchymal stem cells from osteoporotic patients produce a type I collagen‐deficient extracellular matrix favoring adipogenic differentiation", Journal of Cellular Biochemistry, 79, No. 4, (2000), 557-565. https://doi.org/10.1002/1097-4644(20001215)79:4<557::AID-JCB40>3.0.CO;2-H
  13. Mao, A. S., Shin, J. W., Mooney, D. J., "Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation", Biomaterials, 98, No. (2016), 184-191. https://doi.org/10.1016/j.biomaterials.2016.05.004
  14. Toupadakis, C. A., Wong, A., Genetos, D. C., Cheung, W. K., Borjesson, D. L., Ferraro, G. L., Galuppo, L. D., Leach, J. K., Owens, S. D., Yellowley, C. E., "Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue", American Journal of Veterinary Research, 71, No. 10, (2010), 1237-1245. https://doi.org/10.2460/ajvr.71.10.1237
  15. Pérez-Castrillo, S., González-Fernández, M., López-González, M., Villar-Suárez, V., "Effect of ascorbic and chondrogenic derived decellularized extracellular matrix from mesenchymal stem cells on their proliferation, viability and differentiation", Annals of Anatomy-Anatomischer Anzeiger, 220, (2018), 60-69. https://doi.org/10.1016/j.aanat.2018.07.006
  16. Wang, W., Li, G., Wang, J., Song, W., Luo, J., Meng, F., Zhang, Y., "Involvement of Rac1 in the micro/nano-topography sensing and osteogenic differentiation in bone marrow mesenchymal stem cells", Materials & Design, 157, (2018), 402-411. https://doi.org/10.1016/j.matdes.2018.07.061
  17. Sattary, M., Rafienia, M., Kazemi, M., Salehi, H., Mahmoudzadeh, M., "Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering", Materials Science and Engineering: C, 97, (2019), 141-155. https://doi.org/10.1016/j.msec.2018.12.030
  18. Lu, Y., Huang, J., Yu, G., Cardenas, R., Wei, S., Wujcik, E. K., Guo, Z., "Coaxial electrospun fibers: Applications in drug delivery and tissue engineering", Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8, No. 5, (2016), 654-677. https://doi.org/10.1002/wnan.1391
  19. Hosseini, S., Naderi-Manesh, H., Vali, H., Eslaminejad, M. B., Sayahpour, F. A., Sheibani, S., Faghihi, S., "Contribution of osteocalcin-mimetic peptide enhances osteogenic activity and extracellular matrix mineralization of human osteoblast-like cells", Colloids and Surfaces B: Biointerfaces, 173, No. (2019), 662-671. https://doi.org/10.1016/j.colsurfb.2018.10.035
  20. Subia, B., Kundu, J., Kundu, S., "Biomaterial scaffold fabrication techniques for potential tissue engineering applications", Tissue Engineering, Intech Publisher, Chapter 7, 141, (2010). https://doi.org/ 10.5772/8581
  21. De-Paula, M. M. M., Afewerki, S., Viana, B. C., Webster, T. J., Lobo, A. O., Marciano, F. R., "Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity", Materials Science and Engineering: C, 103, (2019), 109778. https://doi.org/10.1016/j.msec.2019.109778
  22. Rajzer, I., Rom, M., Menaszek, E., Pasierb, P., "Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering", Materials Letters, 138, (2015), 60-63. https://doi.org/10.1016/j.matlet.2014.09.077
  23. Yan, Y., Chen, H., Zhang, H., Guo, C., Yang, K., Chen, K., Cheng, R., Qian, N., Sandler, N., Zhang, Y. S., "Vascularized 3D printed scaffolds for promoting bone regeneration", Biomaterials, 190, (2019), 97-110. https://doi.org/10.1016/j.biomaterials.2018.10.033
  24. Martina, M., Hutmacher, D. W., "Biodegradable polymers applied in tissue engineering research: A review", Polymer International, 56, No. 2, (2007), 145-157. https://doi.org/10.1002/pi.2108
  25. Mahdieh, Z. M., Mottaghitalab, V., Piri, N., Haghi, A. K., "Conductive chitosan/multi walled carbon nanotubes electrospun nanofiber feasibility", Korean Journal of Chemical Engineering, 29, No. 1, (2012), 111-119. https://doi.org/10.1007/s11814-011-0129-y
  26. Heikkilä, P., Harlin, A., "Electrospinning of polyacrylonitrile (PAN) solution: Effect of conductive additive and filler on the process", Express Polymer Letters, 3, No. 7, (2009), 437-445. https://doi.org/10.3144/expresspolymlett.2009.53
  27. Kim, T. H., Lee, T., El-Said, W. A., Choi, J. W., "Graphene-based materials for stem cell applications", Materials, 8, No. 12, (2015), 8674-8690. https://doi.org/10.3390/ma8125481
  28. Kumar, S., Chatterjee, K., "Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices", ACS Applied Materials & Interfaces, 8, No. 40, (2016), 26431-26457. https://doi.org/10.1021/acsami.6b09801
  29. Tohidlou, M. H., Shafiei, S. S., Shiralipoor, F., "Preparation and evaluation of polycaprolactone/amine functionalized carbon nanotube electrospun nanocomposite scaffold containing mesenchymal stem cells for use in hard tissue engineering", Journal of Advanced Materials and Technologies, 8, No. 4, (2020), 19-30. (In Farsi). https://doi.org/10.30501/jamt.2020.93226
  30. Afzali, A., Mottagitalab, V., Afghahi, S. S., Jafarian, M., "The coating of composite nanoparticles of bafe12o19/MWCNT using silicon over nowowen substrtae for radar absorption in X and Ku band", Journal of Advanced Materials and Technologies (JAMT), 8, No. 4, (2020), 67-77 (In Farsi). https:/doi.org/10.30501/jamt.2020.104247
  31. Singh, G., Gangacharyulu, D., Thakur, M., "An experimental study on thermophysical properties of multiwalled carbon nanotubes ", International Journal of Engineering, Vol. 30, No. 8, (2017), 1223-1230. https:/doi.org/10.5829/ije.2017.30.08b.15
  32. Zarei, M., Karbasi, S., "Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly (3-hydroxybutirate) scaffold for tissue engineering applications", Journal of Porous Materials, 25, No. 1, (2018), 259-272. https://doi.org/10.1007/s10934-017-0439-5
  33. Liu, Z., Tabakman, S., Welsher, K., Dai, H., “Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery", Nano Research, 2, No. 2, (2009), 85-120. https://doi.org/10.1007/s12274-009-9009-8
  34. Bianco, A., Kostarelos, K., Partidos, C. D., Prato, M., "Biomedical applications of functionalised carbon nanotubes", Chemical Communications, 5, (2005), 571-577. https://doi.org/10.1039/B410943K
  35. Harrison, B. S., Atala, A., "Carbon nanotube applications for tissue engineering", Biomaterials, 28, No. 2, (2007), 344-353. https://doi.org/10.1016/j.biomaterials.2006.07.044
  36. Pei, B., Wang, W., Dunne, N., Li, X., "Applications of carbon nanotubes in bone tissue regeneration and engineering: Superiority, concerns, current advancements, and prospects", Nanomaterials, 9, No. 10, (2019), 1501. https://doi.org/10.3390/nano9101501
  37. Liu, Y., Lu, J., Xu, G., Wei, J., Zhang, Z., Li, X., "Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating", Materials Science and Engineering: C, 69, (2016), 865-874. https://doi.org/10.1016/j.msec.2016.07.069
  38. Hirata, E., Uo, M., Takita, H., Akasaka, T., Watari, F., Yokoyama, A., "Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering", Carbon, 49, No. 10, (2011), 3284-3291. https://doi.org/10.1016/j.carbon.2011.04.002
  39. Da Silva, E. E., Della Colleta, H. H., Ferlauto, A. S., Moreira, R. L., Resende, R. R., Oliveira, S., Kitten, G. T., Lacerda, R. G., Ladeira, L. O., "Nanostructured 3-D collagen/nanotube biocomposites for future bone regeneration scaffolds", Nano Research, 2, No. 6, (2009), 462-473. https://doi.org/10.1007/s12274-009-9042-7
  40. Oyefusi, A., Olanipekun, O., Neelgund, G. M., Peterson, D., Stone, J. M., Williams, E., Carson, L., Regisford, G., Oki, A., "Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: Promising bone implant materials", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132, (2014), 410-416. https://doi.org/10.1016/j.saa.2014.04.004
  41. Rouse, J. G., Van Dyke, M. E., "A review of keratin-based biomaterials for biomedical applications", Materials, 3, No. 2, (2010), 999-1014. https://doi.org/10.3390/ma3020999
  42. Kakkar, P., Verma, S., Manjubala, I., Madhan, B., "Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering", Materials Science and Engineering: C, 45, No. (2014), 343-347. https://doi.org/10.1016/j.msec.2014.09.021
  43. Li, Y., Wang, Y., Ye, J., Yuan, J., Xiao, Y., "Fabrication of poly (ε-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering", Materials Science and Engineering: C, 68, (2016), 177-183. https://doi.org/10.1016/j.msec.2016.05.117
  44. Mahmoodi, M., Kalantari, M., Mirhaj, M., "Effect of hydroxyapatite nanoparticles on differentiotion of mesenchymal stem cells into bone cells in polycaprolacton/keratin/hydroxyapatite scaffolds", Advanced Processes in Materials Engineering, 14, No. 1, (2020), 55-71, (In Farsi). http://ma.iaumajlesi.ac.ir/article_667332_3b42ffbddf042f62e9589ad5dd795554.pdf?lang=en
  45. Samanta, A., Takkar, S., Kulshreshtha, R., Nandan, B., Srivastava, R. K., "Hydroxyapatite stabilized pickering emulsions of poly (ε-caprolactone) and their composite electrospun scaffolds", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, (2017), 224-230. https://doi.org/10.1016/j.colsurfa.2017.09.001
  46. Zhao, X., Lui, Y. S., Choo, C. K. C., Sow, W. T., Huang, C. L., Ng, K. W., Tan, L. P., Loo, J. S. C., "Calcium phosphate coated keratin–PCL scaffolds for potential bone tissue regeneration", Materials Science and Engineering: C, 49, (2015), 746-753. https://doi.org/10.1016/j.msec.2015.01.084
  47. Kim, H. M., Kishimoto, K., Miyaji, F., Kokubo, T., Yao, T., Suetsugu, Y., Tanaka, J., Nakamura, T., "Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products", Journal of Biomedical Materials Research, 46, No. 2, (1999), 228-235. https://doi.org/10.1002/(SICI)1097-4636(199908)46:2<228::AID-JBM12>3.0.CO;2-J
  48. Tavakoli, M., Karbasi, S., Soleymani Eil Bakhtiari, S., "Evaluation of physical, mechanical, and biodegradation of chitosan/graphene oxide composite as bone substitutes", Polymer-Plastics Technology and Materials, 59, No. 4, (2020), 430-440. https://doi.org/10.1080/25740881.2019.1653467
  49. Shafiei, S. S., Shavandi, M., Ahangari, G., Shokrolahi, F., "Electrospun layered double hydroxide/poly (ε-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells", Applied Clay Science, 127, (2016), 52-63. https://doi.org/10.1016/j.clay.2016.04.004
  50. Norouz, F., Halabian, R., Salimi, A., Ghollasi, M., "A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro", Materials Science and Engineering: C, 103, (2019), 109857. https://doi.org/10.1016/j.msec.2019.109857
  51. Esparza, Y., Ullah, A., Boluk, Y., Wu, J., "Preparation and characterization of thermally crosslinked poly (vinyl alcohol)/feather keratin nanofiber scaffolds", Materials & Design, 133, (2017), 1-9. https://doi.org/10.1016/j.matdes.2017.07.052
  52. Shokrgozar, M. A., Mottaghitalab, F., Mottaghitalab, V., Farokhi, M., "Fabrication of porous chitosan/poly (vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering", Journal of Biomedical Nanotechnology, 7, No. 2, (2011), 276-284. https://doi.org/10.1166/jbn.2011.1284
  53. Salimbeygi, G., Nasouri, K., Shoushtari, A. M., Malek, R., Mazaheri, F., "Fabrication of polyvinyl alcohol/multi-walled carbon nanotubes composite electrospun nanofibres and their application as microwave absorbing material", Micro & Nano Letters, 8, No. 8, (2013), 455-459. https://doi.org/10.1049/mnl.2013.0381
  54. Munz, M., Giusca, C. E., Myers-Ward, R. L., Gaskill, D. K., Kazakova, O., "Thickness-dependent hydrophobicity of epitaxial graphene", Acs Nano, 9, No. 8, (2015), 8401-8411. https://doi.org/10.1021/acsnano.5b03220
  55. Soleymani Eil Bakhtiari, S., Karbasi, S., Hassanzadeh Tabrizi, S. A., Ebrahimi-Kahrizsangi, R., Salehi, H., "Evaluation of the effects of chitosan/multiwalled carbon nanotubes composite on physical, mechanical and biological properties of polymethyl methacrylate-based bone cements", Materials Technology, 35, No. 5, (2020), 267-280. https://doi.org/10.1080/10667857.2019.1678086
  56. Wu, X., Walsh, K., Hoff, B. L., Camci-Unal, G., "Mineralization of biomaterials for bone tissue engineering", Bioengineering, 7, No. 4, (2020), 132. https://doi.org/10.3390/bioengineering7040132
  57. Guo, T., Yang, X., Deng, J., Zhu, L., Wang, B., Hao, S., "Keratin nanoparticles-coating electrospun PVA nanofibers for potential neural tissue applications", Journal of Materials Science: Materials in Medicine, 30, No. 1, (2019), 9. https://doi.org/10.1007/s10856-018-6207-5
  58. Atieh, M. A., Bakather, O. Y., Al-Tawbini, B., Bukhari, A. A., Abuilaiwi, F. A., Fettouhi, M. B., "Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water", Bioinorganic Chemistry and Applications, 2010, (2010). https://doi.org/10.1155/2010/603978
  59. Zhang, H., "Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration", Journal of Bioactive and Compatible Polymers, 26, No. 4, (2011), 347-362. https://doi.org/10.1177/0883911511413450
  60. Crowder, S. W., Liang, Y., Rath, R., Park, A. M., Maltais, S., Pintauro, P. N., Hofmeister, W., Lim, C. C., Wang, X., Sung, H. J., "Poly (ε-caprolactone)–carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells", Nanomedicine, 8, No. 11, (2013), 1763-1776. https://doi.org/10.2217/nnm.12.204
  61. Raucci, M., Alvarez-Perez, M., Giugliano, D., Zeppetelli, S., Ambrosio, L., "Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects", Regenerative Biomaterials, 3, No. 1, (2016), 13-23. https://doi.org/10.1093/rb/rbv026
  62. Nayak, T. R., Jian, L., Phua, L. C., Ho, H. K., Ren, Y., Pastorin, G., "Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation", ACS Nano, 4, No. 12, (2010), 7717-7725. https://doi.org/10.1021/nn102738c
  63. Crowder, S. W., Liang, Y., Rath, R., Park, A. M., Maltais, S., Pintauro, P. N., Hofmeister, W., Lim, C. C., Wang, X., Sung, H. J., "Poly (ε-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells", Nanomedicine, 8, No. 11, (2013), 1763-1776. https://doi.org/10.2217/nnm.12.204
  64. Ino, K., Onodera, T., Kanno, Y., Suda, A., Kunikata, R., Matsue, T., Shiku, H., "Electrochemicolor imaging of endogenous alkaline phosphatase and respiratory activities of mesenchymal stem cell aggregates in early-stage osteodifferentiation", Electrochimica Acta, 268, (2018), 554-561. https://doi.org/10.1016/j.electacta.2018.02.094
  65. Jaroszewicz, J., Idaszek, J., Choinska, E., Szlazak, K., Hyc, A., Osiecka-Iwan, A., Swieszkowski, W., Moskalewski, S., "Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple, alkaline phosphatase based method", Materials Science and Engineering: C, 96, (2019), 319-328. https://doi.org/10.1016/j.msec.2018.11.027
  66. Liu, Z., Tang, Y., Kang, T., Rao, M., Li, K., Wang, Q., Quan, C., Zhang, C., Jiang, Q., Shen, H., "Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement", Colloids and Surfaces B: Biointerfaces, 131, No. (2015), 39-46. https://doi.org/10.1016/j.colsurfb.2015.04.032
  67. Lin, C., Wang, Y., Lai, Y., Yang, W., Jiao, F., Zhang, H., Ye, S., Zhang, Q., "Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly (lactic-co-glycolic acid) for bone tissue engineering", Colloids and Surfaces B: Biointerfaces, 83, No. 2, (2011), 367-375. https://doi.org/10.1016/j.colsurfb.2010.12.011
  68. Gregory, C. A., Gunn, W. G., Peister, A., Prockop, D. J., "An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction", Analytical Biochemistry, 329, No. 1, (2004), 77-84. https://doi.org/10.1016/j.ab.2004.02.002
  69. Zamini, A., Ragerdi, K. I., Barbarestani, M., Hedayatpour, A., Mahmoudi, R., Vardasbi, S., Shokrgozar, M. A., "Effects of melatonin on the proliferation and differentiation of rat adipose-derived stem cells", Indian Journal of Plastic Surgery, 41, No. 1, (2008), 8-14. https://doi.org/10.4103/0970-0358.41104
  70. Lee, W. C., Lim, C. H. Y., Shi, H., Tang, L. A., Wang, Y., Lim, C. T., Loh, K. P., "Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide", ACS Nano, 5, No. 9, (2011), 7334-7341. https://doi.org/10.1021/nn202190c
  71. Mccullen, S. D., Stevens, D. R., Roberts, W. A., Clarke, L. I., Bernacki, S. H., Gorga, R. E., Loboa, E. G., "Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells", International Journal of Nanomedicine, 2, No. 2, (2007), 253. PMCID: PMC2673972, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673972/
  72. Zhang, H., Chen, Z., "Fabrication and characterization of electrospun PLGA/MWNTs/hydroxyapatite biocomposite scaffolds for bone tissue engineering", Journal of Bioactive and Compatible Polymers, 25, No. 3, (2010), 241-259. https://doi.org/10.1177/0883911509359486
  73. Meng, J., Song, L., Meng, J., Kong, H., Zhu, G., Wang, C., Xu, L., Xie, S., Xu, H., "Using single‐walled carbon nanotubes nonwoven films as scaffolds to enhance long‐term cell proliferation in vitro", Journal of Biomedical Materials Research Part A, 79, No. 2, (2006), 298-306. https://doi.org/10.1002/jbm.a.30787
  74. Shi, X., Sitharaman, B., Pham, Q. P., Liang, F., Wu, K., Billups, W. E., Wilson, L. J., Mikos, A. G., "Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering", Biomaterials, 28, No. 28, (2007), 4078-4090. https://doi.org/10.1016/j.biomaterials.2007.05.033