نوع مقاله : مقاله مروری پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه زنجان، زنجان، زنجان، ایران

2 کارشناس ارشد، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

3 استاد، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

چکیده

مفهوم خط تماس سه‌فازی از مباحث نادیده ‌گرفته‌شده در ترشوندگی معمول است که امروزه، محور مطالعات علمی فراوانی قرار گرفته است. در این مقاله، پس از ارائه تعریف خط تماس سه‌فازی و ذکر اهمیت آن در مطالعات ترشوندگی، این مفهوم و روش‌های مشخصه‌یابی آن با فناوری‌های تجربی و محاسباتی ِدینامیک مولکولی مرور و بررسی شد. نخست، با کمک نظریه‌ عمومی مویینگی، مدل مطلوب یانگ، اصلاح شد و کشش خطی، به‌منزله متغیری فیزیکی، به آن منصوب شد. ازآنجاکه مدل‌های مطلوب دقیقاً نمی‌توانند علامت و اندازه‌ کشش خطی را تعیین کنند، از تعریف سطوح واقعی و غیرمطلوب استفاده ‌شد. سپس، محدوده‌ تأثیر خط تماس، با کمک نتایج تحلیل ساختار لبه‌ قطره، با میکروسکوپ نوری و الکترونی روبشی- محیطی بررسی ‌شد. قانون قیاسی به‌دست‌آمده از روش اول، مقدار توانی بزرگ‌تر از 66/0 را نشان ‌داد، اما همین عدد برای روش دوم، با وضوح بالا، همواره در حدود 62/0 بود. در مقابل، شبیه‌سازی‌های دینامیک مولکولی نشان دادند که می‌توان به‌طور موضعی، فاصله‌ صفر پتانسیل لنارد- جونز را عرض مؤثر خط تماس درنظر گرفت. در بخش پایانی، در خصوص مهم‌ترین برهم‌کنش خط تماس با محیط با عنوان پدیده‌ گیرکردن بحث ‌شد. از دیدگاه تجربی، مشخصه‌یابی نیرویی پدیده‌ گیرکردن با تمرکز بر نیروی چسبندگی انجام ‌می­شود. این پدیده در مقیاس نانو، به‌دلیل مقدار زیاد انرژی جنبشی در دسترس، به‌منزله کاهش شدید در سرعت جابه‌جایی لبه‌ قطره تعریف ‌می­گردد که کاملاً با دیدگاه ماکروسکوپی متفاوت است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Triple-Phase Contact Line in Partial Wetting: Theories, Experimental Measurements, and Nanoscopic Approach

نویسندگان [English]

  • Fatemeh Asjadi 1
  • Farshad Esmaeilian 2
  • Esmaeil Salahi 3

1 Assistant Professor, Department of Materials Engineering, Faculty of Engineering, University of Zanjan, Zanjan, Zanjan, Iran

2 M. Sc., Department of Ceramics, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

3 Professor, Department of Ceramics, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

چکیده [English]

One of the overlooked topics in classical wetting, which is the main subject of numerous recent researches, is the concept of the triple-phase contact line (TPCL). In this article, after defining the TPCL and emphasizing its significance in wetting studies, this concept and its characterization methods using experimental techniques and molecular dynamics simulations are reviewed and investigated. First, the ideal Young’s model was revised based on the generalized theory of capillarity, and line tension, Γ, was assigned to TPCL as a defining physical parameter. Because ideal models cannot correctly determine the sign and value of Γ, real and non-ideal surfaces were used. Furthermore, the width of the TPCL was investigated by the obtained data from structural analysis of the droplet’s edge using optical and environmental-scanning electron microscopy. The corresponding scaling law from the former lead to a power greater than 0.66, whereas the latter high-resolution method resulted in a value of ~ 0.62. Conversely, MD simulations have illustrated that it is possible to locally use the minimum particle distance for the Lennard-Jones potential as the effective width of the TPCL. In the final section, the most important interaction of the TPCL with its vicinity, known as pinning, was discussed. From the experimental perspective, the focus is on the adhesion force measurements which results in the force-based characterization of the pinning phenomenon. However, on the nanoscale, due to the available kinetic energy, this phenomenon is defined as the drastic slow-down of the motion of the TPCL, directly contradicting the macroscopic view.

کلیدواژه‌ها [English]

  • Partial Wetting
  • Triple-Phase Contact Line
  • Line Tension
  • Nano Droplet
  • Pinning Force
  1. Lindsay, S. M., Introduction to Nanoscience, Oxford University Press, (2010). https://www.chemistry.nat.fau.eu/files/2017/07/Intro-to-Nanoscience.pdf
  2. Adamson, A. W., Gast, A. P., "The solid-liquid interface-contact angle", Physical Chemistry of Surfaces, Wiley-Interscience Publication, New York, (1997), 347-389. https://doi.org/10.1021/ed060pA322
  3. Meier, G. H., Thermodynamics of Surfaces and Interfaces: Concepts in Inorganic Materials, Cambridge University Press, (2014). https://doi.org/10.1017/CBO9781139047029
  4. Akhair, S. H., Harun., Z., Basri, H., Ahmad, R. A., Rashid, A. Q., Azhar, F. H., "Hydrophobicity properties of graphite and reduced graphene oxide of the polysulfone (PSf) mixed matrix membrane", International Journal of Engineering, Vol. 31, No. 8, (2018), 1381-1388. https://doi.org/10.5829/ije.2018.31.08b.29
  5. Shahroudi, H., Vaezi, M. R., Eshaghi, A., Kazemzadeh, A., "Fabrication of PMMA-SiO2 super-hydrophilic transparent nanocomposite coating", Journal of Advanced Materials and Technologies, Vol. 9, No. 2, (2020), 1-8. https://doi.org/10.30501/JAMT.2020.216696.1072
  6. De Gennes, P. G., Brochard-Wyart, F., Quéré, D., Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer Science & Business Media, (2013). https://doi.org/10.1063/1.1878340
  7. Amirfazli, A., Neumann, A. W., "Status of the three-phase linetension: A review", Advances in Colloid and Interface Science, Vol. 110, No. 3, (2004), 121-141. https://doi.org/10.1016/j.cis.2004.05.001
  8. Gokhale, S. J., Plawsky, J. L., Wayner, P. C., "Effect of interfacial phenomena on dewetting in dropwise condensation", Advances in Colloid and Interface Science, Vol. 104, No. 1, (2003), 175-190. https://doi.org/10.1016/S0001-8686(03)00041-1
  9. Majhy, B., Priyadarshini, P., Sen, A. K., "Effect of surface energy and roughness on cell adhesion and growth – Facile surface modification for enhanced cell culture", RSC Advances, Vol. 11, (2021), 15467-15476. https://doi.org/10.1039/D1RA02402G
  10. Gibbs, J. W., The Scientific Papers of JW Gibbs, Dover Publications, New York, (1961). https://books.google.com/books/about/The_Scientific_Papers_of_J_W_Gibbs.html?id=_a-2zQEACAAJ
  11. Boruvka, L., Neumann, A. W., "Generalization of the classical theory of capillarity", The Journal of Chemical Physics, Vol. 66, No. 12, (1977), 5464-5476. https://doi.org/10.1063/1.433866
  12. Neumann, A. W., David, R., Zuo, Y., Applied Surface Thermodynamics, 2nd, CRC Press, (2010). https://doi.org/10.1201/EBK0849396878
  13. Young, T., "An essay on the cohesion of fluids", Journal of Philosophical Transactions of the Royal Society of London Series I, Vol. 95, No. 1, (1805), 171-172. https://doi.org/10.1098/rstl.1805.0005
  14. Bormashenko, E., "Young, Boruvka–Neumann, Wenzel and Cassie–Baxter equations as the transversality conditions for the variational problem of wetting", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 345, No. 1, (2009), 163-165. https://doi.org/10.1016/j.colsurfa.2009.04.054
  15. Wu, J., Xia, J., Lei, W., Wang, B. P., "Advanced understanding of stickiness on superhydrophobic surfaces", Scientific Reports, Vol. 3, No. 1, (2013), 3268. https://doi.org/10.1038/srep03268
  16. Marmur, A., "Line tension and the intrinsic contact angle in solid–liquid–fluid systems", Journal of Colloid and Interface Science, Vol. 186, No. 2, (1997), 462-466. https://doi.org/10.1006/jcis.1996.4666
  17. Marmur, A., Krasovitski, B., "Line tension on curved surfaces:  Liquid drops on solid micro- and nanospheres", Langmuir, Vol. 18, No. 23, (2002), 8919-8923. https://doi.org/10.1021/la026167i
  18. Zhang, J., Wang, P., Borg, M. K., Reese, J. M., Wen, D., "A critical assessment of the line tension determined by the modified young’s equation", Physics of Fluids, Vol. 30, No. 8, (2018), 082003. https://doi.org/10.1063/1.5040574
  19. Anisimov, M. A., Bertrand, C. E., "Chapter 7: Thermodynamics of fluids at meso and nano scales", Applied Thermodynamics of Fluids, The Royal Society of Chemistry, (2010), 172-214. https://doi.org/10.1039/9781849730983-00172
  20. Blokhuis, E. M., Kuipers, J., "Thermodynamic expressions for the Tolman length", The Journal of Chemical Physics, Vol. 124, No. 7, (2006). https://doi.org/074701.10.1063/1.2167642
  21. Lei, Y. A., Bykov, T., Yoo, S., Zeng, X. C., "The Tolman length:  Is it positive or negative?", Journal of the American Chemical Society, Vol. 127, No. 44, (2005). https://doi.org/15346-15347.10.1021/ja054297i
  22. Foroutan, M., Zahedi, H., Esmaeilian, F., "Temperature effects on spreading of water nano-droplet on poly (methyl methacrylate): A molecular dynamics simulation study", Journal of Polymer Science Part B: Polymer Physics, Vol. 55, No. 20, (2017), 1532-1541. https://doi.org/10.1002/polb.24409
  23. Foroutan, M., Fatemi, S. M., Esmaeilian, F., Fadaei Naeini, V., Baniassadi, M., "Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient", Physics of Fluid, Vol. 30, No. 5, (2018), 052101. https://doi.org/10.1063/1.5021547
  24. Kanduč, M., "Going beyond the standard line tension: Size-dependent contact angles of water nanodroplets", The Journal of Chemical Physics, Vol. 147, No. 17, (2017), 174701. https://doi.org/10.1063/1.4990741
  25. Kanduč, M., Eixeres, L., Liese, S., Netz, R. R., "Generalized line tension of water nanodroplets", Physical Review E, Vol. 98, No. 3, (2018), 032804. https://doi.org/10.1103/PhysRevE.98.032804
  26. Schimmele, L., Dietrich, S., "Line tension and the shape of nanodroplets", The European Physical Journal E, Vol. 30, No. 4, (2009), 427. https://doi.org/10.1140/epje/i2009-10542-3
  27. Schimmele, L., Dietrich, S., Napiórkowski, M., "Conceptual aspects of line tensions", The Journal of Chemical Physics, Vol. 127, No. 16, (2007), 164715. https://doi.org/10.1063/1.2799990
  28. Imaizumi, Y., Omori, T., Kusudo, H., Bistafa, C., Yamaguchi, Y., "Wilhelmy equation revisited: A lightweight method to measure liquid–vapor, solid–liquid, and solid–vapor interfacial tensions from a single molecular dynamics simulation", The Journal of Chemical Physics, Vol. 153, No. 3, (2020), 034701. https://doi.org/10.1063/5.0011979
  29. Esmaeilian, F., Sahba Yaghmaee, M., Riahifar, R., Raissi, B., "Barras-ye tahlili-ye raveshha-ye andazegiri-ye zavyey-e tamas-e zaheri [Analytical study of apparent contact angle measurement methods]", Journal of Iranian Ceramic Society, Vol. 11, No. 3, (2015), 33-41. (In Farsi). http://jicers.ir/article-1-166-fa.html&sw=
  30. Drelich, J. W., "Contact angles: From past mistakes to new developments through liquid-solid adhesion measurements", Advances in Colloid and Interface Science, Vol. 267, (2019), 1-14. https://doi.org/10.1016/j.cis.2019.02.002
  31. Wenzel, R. N., "Resitance of solid surfaces to wetting by water", Industrial & Engineering Chemistry, Vol. 28, No. 8, (1936), 988-994. https://doi.org/10.1021/ie50320a024
  32. Cassie, A. B. D., Baxter, S., "Wettability of porous surfaces", Transactions of the Faraday Society, Vol. 40, (1944), 546-551. https://doi.org/10.1039/TF9444000546
  33. Cassie, A. B. D., "Contact angles", Discussions of the Faraday Society, Vol. 3, (1948), 11-16. https://doi.org/10.1039/DF9480300011
  34. Erbil, H. Y., "The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review" Surface Science Reports, Vol. 69, No. 4, (2014), 325-365. https://doi.org/10.1016/j.surfrep.2014.09.001
  35. Pease, D. C., "The significance of the contact angle in relation to the solid surface", The Journal of Physical Chemistry, Vol. 49, No. 2, (1945), 107-110. https://doi.org/10.1021/j150440a007
  36. Esmaeilian, F., Sahba Yaghmaee, M., Riahifar, S. R., Raissi, B., "Zavye-ye tamas va masale-ye pasmand-e- tar shavandegi: Bonyan va raveshha-ye andazegir-ye an [Contact angle and the hysteresis dilemma: fundamentals and measurement methods]", Donyay-e Nano, No. 40, (2015), 75-81. (In Farsi). http://donyayenano.ir/article_45976.html
  37. Eral, H. B., Oh, J. M., "Contact angle hysteresis: A review of fundamentals and applications", Colloid and Polymer Science, Vol. 291, No. 2, (2013), 247-260. https://doi.org/10.1007/s00396-012-2796-6
  38. Bormashenko, E., "Progress in understanding wetting transitions on rough surfaces", Advances in Colloid and Interface Science, Vol. 222, (2015), 92-103. https://doi.org/10.1016/j.cis.2014.02.009
  39. Extrand, C. W., "Model for contact angles and hysteresis on rough and ultraphobic surfaces", Langmuir, Vol. 18, No. 21, (2002), 7991-7999. https://doi.org/10.1021/la025769z
  40. Gao, L., McCarthy, T. J., "How Wenzel and Cassie were wrong", Langmuir, Vol. 23, No. 7, (2007), 3762-3765. https://doi.org/10.1021/la062634a
  41. McHale, G., "Cassie and Wenzel:  Were they really so wrong?", Langmuir, Vol. 23, No. 15, (2007), 8200-8205. https://doi.org/10.1021/la7011167
  42. Swain, P. S., Lipowsky, R., "Contact angles on heterogeneous surfaces:  A new look at Cassie's and Wenzel's laws", Langmuir, Vol. 14, No. 23, (1998), 6772-6780. https://doi.org/10.1021/la980602k
  43. Shardt, N., Elliott, J. A. W., "Gibbsian thermodynamics of Cassie–Baxter wetting (Were Cassie and Baxter wrong? revisited)", Langmuir, Vol. 34, No. 40, (2018), 12191-12198. https://doi.org/10.1021/acs.langmuir.8b02062
  44. Esmaeilian, F., Riahifar, R., Sahba Yaghmaee, M., Raissi, B., "Barras-ye tajrobi-ye tasir-e sath-e tamas va khatt-e tamas se faz bar pishbini-ye modelha-ye tarshavandegy bar varagh-e acrylic-e mashinkari shode ba lazer-e CO2 [Experimental investigation of the effect of contact area and the triple-phase contact line on the applicability of the wetting models to laser-etched cast acrylic sheet]", Proceedings of 16th National Seminar on Surface Engineering, Iranian Society of Surface Science and Technology, Materials and Energy Research Center (MERC), (2016). (In Farsi). https://www.sid.ir/Fa/Seminar/ViewPaper.aspx?ID=41787
  45. Starov, V. M., "Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading", Advances in Colloid and Interface Science, Vol. 161, No. 1, (2010), 139-152. https://doi.org/10.1016/j.cis.2010.02.002
  46. Esmaeilian, F., Sahba Yaghmaee, M., Riahifar, R., Raissi, B., "Comparison of wetting models and geometrical analysis in describing the effect of cavity number, size, and position on apparent contact angle", Journal of Adhesion Science and Technology, Vol. 31, No. 12, (2017), 1338-1347. https://doi.org/10.1080/01694243.2016.1256633
  47. Decker, E. L., Garoff, S., "Contact angle hysteresis: the need for new theoretical and experimental models", The Journal of Adhesion, Vol. 63, No. 1-3, (1997), 159-185. https://doi.org/10.1080/00218469708015219
  48. Bormashenko, E., Musin, A., Whyman, G., Barkay, Z., Zinigrad, M., "Revisiting the fine structure of the triple line", Langmuir, Vol. 29, No. 46, (2013), 14163-14167. https://doi.org/10.1021/la403086w
  49. Iliev, P., Pesheva, N., Iliev, S., "Roughness of the contact line on random self-affine rough surfaces", Physical Review E, Vol. 98, No. 6, (2018), 060801. https://doi.org/10.1103/PhysRevE.98.060801
  50. Foroutan, M., Fatemi, S. M., Esmaeilian, F., Fadaei Naeini, V., "Evaporation of water on suspended graphene: Suppressing the effect of physically heterogeneous surfaces", Langmuir, Vol. 34, No. 46, (2018), 14085-14095. https://doi.org/10.1021/acs.langmuir.8b03120
  51. Zhang, J., Leroy, F., Müller-Plathe, F., "Evaporation of nanodroplets on heated substrates: A molecular dynamics simulation study", Langmuir, Vol. 29, No. 31, (2013), 9770-9782. https://doi.org/10.1021/la401655h
  52. Zhang, J., Müller-Plathe, F., Leroy, F., "Pinning of the contact line during evaporation on heterogeneous surfaces: Slowdown or temporary immobilization? insights from a nanoscale study", Langmuir, Vol. 31, No. 27, (2015), 7544-7552. https://doi.org/10.1021/acs.langmuir.5b01097
  53. Ritchie, J. A., Yazdi, J. S., Bratko, D., Luzar, A., "Metastable sessile nanodroplets on nanopatterned surfaces", The Journal of Physical Chemistry C, Vol. 116, No. 15, (2012), 8634-8641. https://doi.org/10.1021/jp300166h
  54. Marmur, A., "Solid-surface characterization by wetting", Annual Review of Materials Research, Vol. 39, No. 1, (2009), 473-489. https://doi.org/10.1146/annurev.matsci.38.060407.132425
  55. Nadkarni, G. D., Garoff, S., "An investigation of microscopic aspects of contact angle hysteresis: Pinning of the contact line on a single defect", Europhysics Letters (EPL), Vol. 20, No. 6, (1992), 523-528. https://doi.org/10.1209/0295-5075/20/6/009
  56. Sun, Y., Jiang, Y., Choi, C., Xie, G., Liu, Q., Drelich, J., "Direct measurements of adhesion forces of water droplets on smooth and patterned polymers", Surface Innovations, Vol. 6, No. 1-2, (2018), 93-105. https://doi.org/10.1680/jsuin.17.00049
  57. Paxson, A. T., Varanasi, K. K., "Self-similarity of contact line depinning from textured surfaces", Nature Communications, Vol. 4, No. 1, (2013), 1492. https://doi.org/10.1038/ncomms2482
  58. Bey, R., Coasne, B., Picard, C., "Probing the concept of line tension down to the nanoscale", The Journal of Chemical Physics, Vol. 152, No. 9, (2020), 094707. https://doi.org/10.1063/1.5143201
  59. Wagemann, E., Wang, Y., Das, S., Mitra, S. K., "Wettability of nanostructured hexagonal boron nitride surfaces: Molecular dynamics insights on the effect of wetting anisotropy", Physical Chemistry Chemical Physics, Vol. 22, No. 4, (2020), 2488-2497. https://doi.org/10.1039/C9CP06708F
  60. Tsimpanogiannis, I. N., Moultos, O. A., Franco, L. F. M., Spera, M. B. d. M., Erdős, M., Economou, I. G., "Self-diffusion coefficient of bulk and confined water: A critical review of classical molecular simulation studies", Molecular Simulation, Vol. 45, No. 4-5, (2019), 425-453. https://doi.org/10.1080/08927022.2018.1511903
  61. Ma, M., Tocci, G., Michaelides, A., Aeppli, G., "Fast diffusion of water nanodroplets on graphene", Nature Materials, Vol. 15, No. 1, (2016), 66-71. https://doi.org/10.1038/nmat4449
  62. Zhang, J., Huang, H., Lu, X. Y., "Pinning–depinning mechanism of the contact line during evaporation of nanodroplets on heated heterogeneous surfaces: A molecular dynamics simulation", Langmuir, Vol. 35, No. 19, (2019), 6356-6366. https://doi.org/10.1021/acs.langmuir.9b00796
  63. Zhang, J. J., Huang, H., Lu, X. Y., "Molecular dynamics study of binary nanodroplet evaporation on a heated homogeneous substrate", Langmuir, Vol. 36, No. 13, (2020), 3439-3451. https://doi.org/10.1021/acs.langmuir.0c00019
  64. Han, Z., Tay, B., Tan, C., Shakerzadeh, M., Ostrikov, K., "Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites", ACS Nano, Vol. 3, No. 10, (2009), 3031-3036. https://doi.org/10.1021/nn900846p
  65. Grigoryev, A., Tokarev, I., Kornev, K. G., Luzinov, I., Minko, S., "Superomniphobic magnetic microtextures with remote wetting control", Journal of the American Chemical Society, Vol. 134, No. 31, (2012), 12916-12919. https://doi.org/10.1021/ja305348n