نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

2 استاد، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

3 دانشیار، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

4 کارشناسی ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه تهران، تهران، تهران، ایران

چکیده

در این پژوهش، نخست با مطالعه منابع مربوطه و به‌کارگیری اطلاعات موجود در آن­ها، تجهیزات موردنیاز برای تولید پوشش سرامیکی به روش پاشش پلاسما با پیش­ماده محلول (SPPS)، شناسایی و ساخته شد. سپس اکسید آلومینیوم، روی سطح زیرلایه با پوشش میانی MCrAlY، با استفاده از تجهیزات ساخته ‌شده، پوشش‌دهی شد. به‌منظور بررسی تأثیر غلظت پیش ­ماده بر ریزساختار پوشش حاصل، از محلول سولفات آلومینیوم با غلظت ­های 5/0 و یک مولار، به‌عنوان پیش ­ماده تزریق‌شده به شعله پلاسما استفاده شد. نتایج نشان داد که پوشش آلومینای به­ دست‌آمده از پیش­ ماده رقیق­ تر، دارای ساختار متخلخل­ تری است و در ریزساختار آن، پوسته ­های شکسته ‌شده حبابی­ شکل به همراه برخی ذرات کروی کوچک مشاهده می ­شوند؛ اما پوشش حاصل از پیش ­ماده غلیظ ­تر، دارای تراکم بیشتری است که دلیل آن، به فرایندهای رخ­داده در حین رسوب­ دهی به روش SPPS مربوط است. نتایج آنالیز XRD برای هر دو پوشش، مشابه بود و فاز غالب در پوشش، α-Al2O3 تشخیص داده شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Precursor Concentration on the Microstructure of Aluminum Oxide Coating Made through the Solution Precursor Plasma Spray Process

نویسندگان [English]

  • Amir Kebriyaei 1
  • Mohammad Reza Rahimipour 2
  • Mansour Razavi 3
  • Atabak Alizadeh Herfati 4

1 Ph. D. Student, Department of Ceramic, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

2 Professor, Department of Ceramic, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

3 Associate Professor, Department of Ceramic, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

4 M. Sc., Materials and Metallurgy Engineerin College, University of Tehran, Tehran, Tehran, Iran

چکیده [English]

In this research, the equipment required to produce ceramic coatings based on Solution Precursor Plasma Spray (SPPS) method was first identified and manufactured by exploring the relevant sources and contained information. Then, aluminum oxide coating was applied to the substrate with MCrAlY bond coat using the set-up. Further, a solution of aluminum sulphate with the concentrations of 0.5 and 1 molar was prepared and used as a precursor injected into the plasma plume in order to evaluate the effect of the precursor concentration on the coating microstructure. The results revealed that the alumina coating obtained from the more diluted precursor had a more porous structure than its counterpart, and its microstructure contained some bubble-like fractured shells as well as small spherical particles. However, the coating obtained from the precursor with higher concentration was found to be denser mainly due to the phenomenon occurring during the deposition through the SPPS process. The XRD analysis yielded similar results for both coatings where the α-Al2O3 was the predominant phase in the coating.

کلیدواژه‌ها [English]

  • SPPS
  • Set Up
  • Alumina
  • Fractured Shells
  • Precursor
  1. Pawlowski, L., "The relationship between structure and dielectric properties in plasma-sprayed alumina coatings", Surface and Coatings Technology, Vol. 35, No. 3-4, (1988), 285-298. https://doi.org/10.1016/0257-8972(88)90042-4
  2. Li, C. J., Yang, G. J., Ohmori, A., "Relationship between particle erosion and lamellar microstructure for plasma-sprayed alumina coatings", Wear, Vol. 260, No. 11-12, (2006), 1166-1172. https://doi.org/10.1016/j.wear.2005.07.006
  3. Stahr, C. C., Saaro, S., Berger, L. M., Dubský, J., Neufuss, K., Herrmann, M., "Dependence of the stabilization of α-alumina on the spray process", Journal of Thermal Spray Technology, Vol. 16, No. 5-6, (2007), 822-830. https://doi.org/10.1007/s11666-007-9107-7
  4. McPherson, R., "On the formation of thermally sprayed alumina coatings", Journal of Materials Science, 15, No. 12, (1980), 3141-3149. https://doi.org/10.1007/BF00550387
  5. Niemi, K., Vuoristo, P., Mäntylä, T., Lugscheider, E., Knuuttila, J., Jungklaus, , "Wear characteristics of oxide coatings deposited by plasma spraying, high power plasma spraying and detonation gun spraying", In Advances of Thermal Scince and Technology, Proceedings of The 8th National Thermal Spray Conference, ASM International, Materials Park, Ohio, U.S., (1995), 645-650. https://www.osti.gov/biblio/379581
  6. Krishnan, R., Dash, S., Kesavamoorthy, R., Babu Rao, C. B., Tyagi, A. K., Raj, B., "Laser surface modification and characterization of air plasma sprayed alumina coatings", Surface and Coatings Technology, 200, No. 8, (2006), 2791-2799. https://doi.org/10.1016/j.surfcoat.2005.05.002
  7. Jun, B. S., Lee, S. J., Messing G. L., "Synthesis of nano-scaled a-Al2O3 particles by combustion spray pyrolysis", Key Engineering Materials, 317-318, (2006), 207-210. https://doi.org/10.4028/www.scientific.net/KEM.317-318.207
  8. Jordan, E. H., Jiang, C., Gell, M., "The solution precursor plasma spray (SPPS) process: A review with energy considerations", Journal of Thermal Spray Technology, 24, No. 7, (2015), 1153-1165. https://doi.org/10.1007/s11666-015-0272-9
  9. Gell, M., Jordan, E. H., Teicholz, M., Cetegen, B. M., Padture, N. P., Xie, L., Chen, D., Ma, X., Roth, J., "Thermal barrier coatings made by the solution precursor plasma spray process", Journal of Thermal Spray Technology, Vol. 17, No. 1, (2008), 124-135. https://doi.org/10.1007/s11666-007-9141-5
  10. Xie, L., Chen, D., Jordan, E. H., Ozturk, A., Wu, F., Ma, X., Cetegen, B. M., Gell, M., "Formation of vertical cracks in solution- precursor plasma-sprayed thermal barrier coatings", Surface and Coatings Technology, Vol. 201, No. 3-4, (2006), 1058-1064. https://doi.org/10.1016/j.surfcoat.2006.01.020
  11. Moreau, C., Bisson, J. F., Lima, R. S., Marple, B. R., "Diagnostics for advanced materials processing by plasma spraying", Journal Pure and Applied Chemistry, Vol. 77, No. 2, (2001), 443-462. https://doi.org/10.1351/pac200577020443
  12. Ma, X., Wu, F., Roth, J., Gell, M., Jordan, E. H., "Low thermal conductivity thermal barrier coating deposited by the solution plasma spray process", Surface and Coatings Technology, Vol. 201, No. 7, (2006), 4447-4452. https://doi.org/10.1016/j.surfcoat.2006.08.095
  13. Chen, D., Jordan, E. H., Renfro, M. W., Gell, M., "Dy: YAG phosphor coating using the solution precursor plasma spray process", Journal of the American Ceramic Society, Vol. 92, No. 1, (2009), 268-271. https://doi.org/10.1111/j.1551-2916.2008.02846.x
  14. Puranen, J., Laakso, J., Kylmälahti, M., Vuoristo, P., "Characterization of high-velocity solution precursor flame-sprayed manganese cobalt oxide spinel coatings for metallic SOFC interconnectors", Journal of Thermal Spray Technology, Vol. 22, No. 5, (2013), 622-630. https://doi.org/10.1007/s11666-013-9922-y
  15. Candidato Jr, R. T., Sokołowski, P., Pawłowski, L., Denoirjean, A., "Preliminary study of hydroxyapatite coatings synthesis using solution precursor plasma spraying", Surface & Coatings Technology, Vol. 277, (2015) 242-250. http://dx.doi.org/10.1016/j.surfcoat.2015.07.046
  16. Xu, P., Coyle, T. W., Pershin, L., Mostaghimi, J., "Fabrication of micro-/nano-structured superhydrophobic ceramic coating with reversible wettability via a novel solution precursor vacuum plasma spray process", Materials & Design, Vol. 160, (2018), 974-984. https://doi.org/10.1016/j.matdes.2018.10.015
  17. Jadhav, A., Padture, N. P., Wu, F., Jordan, E. H., Gell, M., "Thick ceramic thermal barrier coatings with high durability deposited using solution-precursor plasma spray", Materials Science and Engineering: A, Vol. 405, No. 1-2, (2005), 313-320. https://doi.org/10.1016/j.msea.2005.06.023
  18. Çılgı, G., Cetişli, H., "Thermal decomposition kinetics of aluminum sulfate hydrate", Journal of Thermal Analysis and Calorimetry, Vol. 98, No. 3, (2009), 855-861. https://doi.org/10.1007/s10973-009-0389-5
  19. Chen, D., Jordan, E. H., Gell, M., "Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process", Surface & Coatings Technology, 202, No. 10, (2008), 2132-2138. https://doi.org/10.1016/j.surfcoat.2007.08.077