نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

2 استاد، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

3 دانشیار، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

4 کارشناسی ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه تهران، تهران، تهران، ایران

چکیده

در این پژوهش ابتدا با مطالعه منابع مربوطه و استفاده از اطلاعات موجود در آنها، تجهیزات مورد نیاز جهت تولید پوشش سرامیکی به روش پاشش پلاسما با پیش ماده محلول (SPPS) شناسایی و ساخته شد. سپس با استفاده از تجهیز ساخته شده، پوشش اکسید آلومینیوم روی سطح زیرلایه دارای پوشش میانی MCrAlY اعمال گردید. به منظور بررسی تأثیر غلظت پیش‌ماده بر روی ریزساختار پوشش حاصله، از محلول سولفات آلومینیوم با غلظت‌های 0.5 و یک مولار به عنوان پیش‌ماده تزریق شده به شعله پلاسما استفاده گردید. نتایج نشان داد که پوشش آلومینا بدست آمده از پیش‌ماده رقیق‌تر دارای ساختار با تخلخل بیشتری بوده و پوسته‌های شکسته شده حبابی شکل به همراه برخی ذرات کروی کوچک در ریزساختار آن ملاحظه گردید. اما پوشش حاصله از پیش‌ماده غلیظ‌تر دارای تراکم بیشتری بود که دلیل آن به فرایندهای اتفاق افتاده در حین رسوب‌دهی به روش SPPS ارتباط دارد. همچنین آنالیز XRD برای هر دو پوشش نتایج مشابهی را نشان داد و فاز غالب در پوشش α-Al2O3 تشخیص داده شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Solution Concentration on Microstructure of Aluminum Oxide Coating Made by Solution Precursor Plasma Spray Process

نویسندگان [English]

  • Amir Kebriyaei 1
  • Mohammad Reza Rahimipour 2
  • Mansour Razavi 3
  • Atabak Alizadeh Herfati 4

1 Ph. D. Student, Department of Ceramic, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

2 Professor, Department of Ceramic, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

3 Associate Professor, Department of Ceramic, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

4 M. Sc., Materials and Metallurgy Engineerin College, University of Tehran, Tehran, Tehran, Iran

چکیده [English]

In this research, first, by studying the relevant sources and using the information contained in them, the equipment required to produce ceramic coatings by SPPS method was identified and manufactured. Then, using the set-up, aluminium oxide coating was applied on the substrate with MCrAlY bond coated. In order to investigate the effect of precursor concentration on the microstructure of the coating, a solution of aluminium sulphate with concentrations of 0.5 and 1 molar was used as a precursor injected into the plasma plume. The results showed that the alumina coating obtained from the more diluted precursor had a more porous structure and the bubble-like fractured shells along with some small spherical particles were observed in its microstructure. But the coating obtained with the more concentrated precursor was denser, which is due to the happened phenomena during the deposition by SPPS process. Also the XRD analysis showed similar results for both coatings and the α-Al2O3 was detected as the predominant phase in the coating.

کلیدواژه‌ها [English]

  • SPPS
  • Set Up
  • Alumina
  • Fractured Shells
  • precursor
  1. Pawlowski, L., "The relationship between structure and dielectric properties in plasma-sprayed alumina coatings", Surface and Coatings Technology, Vol. 35, No. 3-4, (1988), 285-298. https://doi.org/10.1016/0257-8972(88)90042-4
  2. Li, C. J., Yang, G. J., Ohmori, A., "Relationship between particle erosion and lamellar microstructure for plasma-sprayed alumina coatings", Wear, Vol. 260, No. 11-12, (2006), 1166-1172. https://doi.org/10.1016/j.wear.2005.07.006
  3. Stahr, C. C., Saaro, S., Berger, L. M., Dubsky, J., Neufuss, K., Herrmann, M., "Dependence of the stabilization of α-alumina on the spray process", Journal of Thermal Spray Technology, Vol. 16, No. 5-6, (2007), 822-830. https://doi.org/10.1007/s11666-007-9107-7
  4. McPherson, R., "On the formation of thermally sprayed alumina coatings", Journal of Materials Science, 15, No. 12, (1980), 3141-3149. https://doi.org/10.1007/BF00550387
  5. Niemi, K., Vuoristo, P., Mäntylä, T., Lugscheider, E., Knuuttila, J., Jungklaus, , "Wear characteristics of oxide coatings deposited by plasma spraying, high power plasma spraying and detonation gun spraying" Advances of Thermal Scince and Technology, Proceedings of The 8th National Thermal Spray Conference, ASM International, Materials Park, Ohio, U.S., (1995), 645-650. https://www.osti.gov/biblio/379581
  6. Krishnan, R., Dash, S., Kesavamoorthy, R., Babu Rao, C. B., Tyagi, A. K., Raj, B., "Laser surface modification and characterization of air plasma sprayed alumina coatings", Surface and Coatings Technology, 200, No. 8, (2006), 2791-2799. https://doi.org/10.1016/j.surfcoat.2005.05.002
  7. Jun, B. S., Lee, S. J., Messing G. L., "Synthesis of nano-scaled a-Al2O3 particles by combustion spray pyrolysis", Key Engineering Materials, 317-318, (2006), 207-210. https://doi.org/10.4028/www.scientific.net/KEM.317-318.207
  8. Jordan, E. H., Jiang, C., Gell, M., "The solution precursor plasma spray (SPPS) process: A review with energy considerations", Journal of Thermal Spray Technology, 24, No. 7, (2015), 1153-1165. https://doi.org/10.1007/s11666-015-0272-9
  9. Gell, M., Jordan, E. H., Teicholz, M., Cetegen, B. M., Padture, N. P., Xie, L., Chen, D., Ma, X., Roth, J., "Thermal barrier coatings made by the solution precursor plasma spray process", Journal of Thermal Spray Technology, Vol. 17, No. 1, (2008), 124-135. https://doi.org/10.1007/s11666-007-9141-5
  10. Xie, L., Chen, D., Jordan, E. H., Ozturk, A., Wu, F., Ma, X., Cetegen, B. M., Gell, M., "Formation of vertical cracks in solution- precursor plasma-sprayed thermal barrier coatings", Surface and Coatings Technology, Vol. 201, No. 3-4, (2006), 1058-1064. https://doi.org/10.1016/j.surfcoat.2006.01.020
  11. Moreau, C., Bisson, J. F., Lima, R. S., Marple, B. R., "Diagnostics for advanced materials processing by plasma spraying", Journal Pure and Applied Chemistry, Vol. 77, No. 2, (2001), 443-462. https://doi.org/10.1351/pac200577020443
  12. Ma, X., Wu, F., Roth, J., Gell, M., Jordan, E. H., "Low thermal conductivity thermal barrier coating deposited by the solution plasma spray process", Surface and Coatings Technology, Vol. 201, No. 7, (2006), 4447-4452. https://doi.org/10.1016/j.surfcoat.2006.08.095
  13. Chen, D., Jordan, E. H., Renfro, M. W., Gell, M., "Dy: YAG phosphor coating using the solution precursor plasma spray process", Journal of the American Ceramic Society, Vol. 92, No. 1, (2009), 268-271. https://doi.org/10.1111/j.1551-2916.2008.02846.x
  14. Puranen, J., Laakso, J., Kylmälahti, M., Vuoristo, P., "Characterization of high-velocity solution precursor flame-sprayed manganese cobalt oxide spinel coatings for metallic SOFC interconnectors", Journal of Thermal Spray Technology, Vol. 22, No. 5, (2013), 622-630. https://doi.org/10.1007/s11666-013-9922-y
  15. Candidato Jr, R. T., Sokołowski, P., Pawłowski, L., Denoirjean, A., "Preliminary study of hydroxyapatite coatings synthesis using solution precursor plasma spraying", Surface & Coatings Technology, Vol. 277, (2015) 242-250. http://dx.doi.org/10.1016/j.surfcoat.2015.07.046
  16. Xu, P., Coyle, T. W., Pershin, L., Mostaghimi, J., "Fabrication of micro-/nano-structured superhydrophobic ceramic coating with reversible wettability via a novel solution precursor vacuum plasma spray process", Materials & Design, Vol. 160, (2018), 974-984. https://doi.org/10.1016/j.matdes.2018.10.015
  17. Jadhav, A., Padture, N. P., Wu, F., Jordan, E. H., Gell, M., "Thick ceramic thermal barrier coatings with high durability deposited using solution-precursor plasma spray", Materials Science and Engineering: A, Vol. 405, No. 1-2, (2005), 313-320. https://doi.org/10.1016/j.msea.2005.06.023
  18. Çılgı, G., Cetişli, H., "Thermal decomposition kinetics of aluminum sulfate hydrate", Journal of Thermal Analysis and Calorimetry, Vol. 98, No. 3, (2009), 855-861. https://doi.org/10.1007/s10973-009-0389-5
  19. Chen, D., Jordan, E. H., Gell, M., "Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process", Surface & Coatings Technology, Vol. 202, No. 10, (2008), 2132-2138. https://doi.org/10.1016/j.surfcoat.2007.08.077