نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه مهندسی مواد، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، یزد، ایران

چکیده

در این پژوهش، از روشی سریع، سازگار با محیط ­زیست و کم ­هزینه، برای تولید انبوه گرافن اکسید استفاده شده است. در این فرآیند، گرافن اکسید، از باگاس نیشکر خوزستان (به­ عنوان ضایعات زراعی)، طی عملیات حرارتی تک­ مرحله ای، در کوره مافلی، در دمای 350 درجه سلسیوس، به مدت 15 دقیقه، در محیط اکسایشی، سنتز شد. نتایج حاصل از آزمون ­های طیف ­سنجی تبدیل فوریه مادون قرمز و پراش پرتو ایکس، تشکیل گرافن اکسید را به ­خوبی تأیید می ­کند. نتایج بررسی ­های میکروسکوپ الکترونی روبشی و میکروسکوپ نیروی اتمی، نشان می ­دهد که میزان چین ­خوردگی ­های ورق­ه ای گرافن اکسید، کم، تعداد لایه ­ها، 5 تا 6 عدد، اندازه متوسط ضخامت صفحات، 5 نانومتر و متوسط ابعاد جانبی صفحات، 500 نانومتر است. آزمون سمّیت این ماده­ سنتز­شده، در غلظت ­های 200، 400 و 600 میکرو­گرم بر میلی ­لیتر محیط کشت باکتری، روی باکتری ­های گرم مثبت استافیلوکوکوس اورئوس، سویه گرم منفی اشریشیاکلی و سودوموناس آئروژینوزا، بررسی شد. نتایج، نشان می­ دهد که گرافن اکسید، در غلظت­ های 400 و 600 میکرو­گرم بر میلی­ لیتر، برای باکتری­ ها، نقش سمّی و ضد­باکتریایی داشته و میزان رشد باکتر ی­ها، پایین است. ه مچنین، نان وورقه ­های گرافن اکسید، اثر ضد­باکتری بیشتری نسبت به باکتری گرم مثبت، در مقایسه با باکتری­ های گرم منفی دارند. نتایج آنالیز حرارتی افتراقی روی باگاس نیشکر، در محیط هوا، نشان می­ دهد که شکل­ گیری گرافن اکسید، در محدوده دمایی 350 درجه سلسیوس بوده اما در محیط آرگون، این دما بالاتر است. به ­علاوه، نتایج آنالیز حرارتی انجام ­شده روی محصول گرافن اکسید سنتز­شده در محیط اکسیدی، نشان­ دهنده شروع ناپایداری آن از دمای 60 درجه سلسیوس است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Microstructural and Antibacterial Properties of Graphene Oxide Synthesized by Green Method

نویسندگان [English]

  • Mojdeh Azizi
  • Mahdi Kalantar

Materials Engineering Group, Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Yazd, Iran

چکیده [English]

In this research, a fast, environmentally friendly, and low-cost method has been used for the synthesis of large-scale production of graphene oxide. In this process, graphene oxide was synthesized via single-step reforming of sugarcane bagasse agricultural waste by oxidation under muffled atmosphere conditions at 350 ºC and for 15 minutes. The results of Fourier transform infrared spectroscopy and X-ray diffraction analyses confirm the formation of graphene oxide. The results of scanning electron microscopy and atomic force microscopy studies show that the graphene oxide sheets are with few wrinkles, the number of layers is 5-6 layers, the average size of the plate thickness is 5 nm, and the average lateral dimensions of the plates is 500 nm. The synthesized graphene oxide was evaluated by the toxicity test at concentrations of 200, 400, and 600 μg/ml on Gram-positive bacteria, “Streptococcus iniae”, and Gram-negative bacteria, “Escherichia coli” and “Pseudomonas aeruginosa”. The results show that graphene oxide at concentrations of 400 and 600 μg / ml has a toxic and an antibacterial agent for bacteria and it has reduced the growth rate of bacteria. In addition, graphene oxide nanosheets are more toxic to gram-positive bacteria than gram-negative bacteria. The results of differential thermal analysis on sugarcane bagasse show that the formation of graphene oxide in air is at a temperature of 350 °C but it is in argon atmosphere is higher. In addition, the results of the thermal analysis performed on the synthesized graphene oxide in the air atmosphere indicate that its instability begins at 60 °C.

کلیدواژه‌ها [English]

  • Graphene Oxide
  • Synthesis
  • Green Method
  • Antibacterial Properties
 
1.   Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., Firsov, A., "Electric field effect in atomically thin carbon films", Journal of Science, Vol. 306, No. 5696, (2004), 666-669. https://doi.org/ 10.1126/science.1102896
2.   Schwierz, F., "Graphene transistors", Journal of Nature Nanotechnoly., Vol. 5, (2010), 487-496. https://doi.org/10.1038/nnano.2010.89
3.   Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N., "Superior thermal conductivity of single-https://doi.org/10.1021/nl0731layer graphene", Nano Letters, Vol. 8, No. 3, (2008), 902-907. https://doi.org/10.1021/nl0731872
4.   Song, H., Zhang, L., He, C., Qu, Y., Tian, Y. F., Lv, Y., "Graphene sheets decorated with SnO2 nanoparticles: In situ synthesis and highly efficient materials for cataluminescence gas sensors", Journal of Materials Chemistry, Vol. 21, (2011), 5972-5977. https://doi.org/10.1039/C0JM04331A
5.   Si, Y. C., Samulski, E. T., "Exfoliated graphene separated by platinum nanoparticles", Journal of Chemistry of Materials, Vol. 20, No. 21, (2008), 6792-6797. https://doi.org/10.1021/cm801356a
6.   Lu, G., Park, S., Yu, K., Ruoff, R. S., Ocola, L. E., Rosenmann, D., Chen, J., "Toward practical gas sensing with highly reduced graphene oxide: A new signal processing method to circumvent run-to-run and device-to-device variations", Journal of ACS Nano, Vol. 5, No. 2, (2011), 1154-1164. https://doi.org/10.1021/nn102803q
7.   Lee, C., Wei, X., Kysar, J. W., Hone, J., "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Journal of Science, Vol. 321, No. 5887, (2008), 385-388. https://doi.org/10.1126/science.1157996
8.   Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., Hobza, P., Zboril, R., Kim, K. S., "Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications", Journal of Chemistry Review, Vol. 112, No. 11, (2012), 6156-6214. https://doi.org/10.1021/cr3000412
9.   Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., Kim, K., "A roadmap for Graphene", Journal of Nature, Vol. 490, (2012), 192-200. https://doi.org/10.1038/nature11458
10. Chung, C., Kim, Y. K., Shin, D., Ryoo, S. R., Hong, B. H., Min, D. H., "Biomedical applications of graphene and graphene oxide", Journal of Accounts of Chemical Research., Vol. 46, No. 10, (2013), 2211-2224. https://doi.org/10.1021/ar300159f
11. Mao, H. Y., Laurent, S., Chen, W., Akhavan, O., Imani, M., Ashkarran, A. A., Mahmoudi, M., "Graphene: Promises, facts, opportunities, and challenges in nanomedicine", Journal of Chemistry Review, Vol. 113, No. 5, (2013), 3407-3424. https://doi.org/10.1021/cr300335p
12. Eigler, S., Hu, Y., Ishii, Y., Hirsch, A., "Controlled functionalization of graphene oxide with sodium azide", Journal of Nanoscale, Vol. 5, No. 24, (2013), 12136-12139. https://doi.org/10.1039/C3NR04332K
13. Heydari Bafrooei, E., Ensafi, A. A., "Chapter 4-Typically used carbon-based nanomaterials in the fabrication of biosensors", Electrochemical biosensors, (2019), 77-98. https://doi.org/10.1016/B978-0-12-816491-4.00004-8
14. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. B. T., Rouff, R. S., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Journal of Carbon, Vol. 45, No. 7, (2007), 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034
15. Brodie, B. C., "On the atomic weight of graphite", Philosophical Transactions of the Royal Society of London, Vol. 149, (1859), 249-259. https://doi.org/10.1098/rstl.1859.0013
16. Staudenmaier, L., "Verfahren zur darstellung der graphitsäure", Berichte der Deutschen Chemischen Gesellschaft, Vol. 31, No. 2, (1898), 1481-1487. https://doi.org/10.1002/cber.18980310237
17. Hummers, W. S., Offeman, R. E., "Preparation of graphitic oxide", Journal of the American Chemical Society, Vol. 80, No. 6, (1958), 1339. https://doi.org/10.1021/ja01539a017
18. Guo, S., Dong, S., "Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications", Journal of Chemical Society Reviews, Vol. 40, No. 5, (2011), 2644-2672. https://doi.org/10.1039/C0CS00079E
19. Seo, D. H., Rider, A. E., Kumar, S., Randeniya, L. K., Ostrikov, K., "Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey", Journal of Carbon, Vol. 60, (2013), 221-228.    https://doi.org/10.1016/j.carbon.2013.04.015
20. Seo, D. H., Han, Z. J., Kumar, S., Ostrikov, K., "Structure-controlled, vertical grapheme-based, binder-free electrodes from plasma-reformed butter enhance super capacitor performance", Journal of Advanced Energy Materials, Vol. 3, No. 10, (2013), 1316-1323. https://doi.org/10.1002/aenm.201300431
21. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., Cho, M. H., "Antimicrobial effects of silver nanoparticles", Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 3, No. 1, (2007), 95-101. https://doi.org/10.1016/j.nano.2006.12.001
22. Ye, S., Shao, K., Li, Z., Guo, N., Zuo, Y., Lil, Q., Lu, Z., Chen, L., He, Q., Han, H., "Antiviral activity of graphene oxide: How sharp edged structure and charge matter", ACS Applied Materials & Interfaces, Vol. 7, No. 38, (2015), 21571-21579. https://doi.org/10.1021/acsami.5b06876
23. Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., Fan, G., "Graphene-based antibacterial paper", ACS Nano, Vol. 4, No. 7, (2010), 4317-4323. https://doi.org/10.1021/nn101097v
24. Akhavan, O., Ghaderi, E., "Toxicity of graphene and graphene oxide nanowalls against bacteria", ACS Nano, Vol. 4, No. 10, (2010), 5731-5736. https://doi.org/10.1021/nn101390x
25. Mannoor, M. S., Tao, H., Clayton, J. D., Sengupta, A., Kaplan, D. L., Naik, R. R., Verma, N., Omenetto, F. G., McAlpine, M. C., "Graphene-based wireless bacteria detection on tooth enamel", Nature Communications, Vol. 3, No. 763, (2012). https://doi.org/10.1038/ncomms1767
26. Zhang, D., Liu, X., Wang, X., "Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties", Journal of Inorganic Biochemistry, Vol. 105, No. 9, (2011), 1181-1186. https://doi.org/10.1016/j.jinorgbio.2011.05.014
27. Akhavan, O., Ghaderi, E., "Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation", Journal of Physical Chemistry CVol. 113, No. 47, (2009), 20214-20220. https://doi.org/10.1021/jp906325q
28. Liu, S., Hu, M., Zeng, T. H., Wu, R., Jiang, R., Wei, J., Wang, L., Kong, J., Chen, Y., "Lateral dimension-dependent antibacterial activity of graphene oxide sheets", Langmuir, Vol. 28, No. 33, (2012), 12364-12372. https://doi.org/10.1021/la3023908
29. Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J., Chen, Y., "Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress", ACS Nano, Vol. 5, No. 6, (2011), 6971-6980. https://doi.org/10.1021/nn202451x
30. Muralidharan, M. N., Ansari, S., "Thermally reduced graphene oxide/thermoplastic polyurethane nanocomposites as photomechanical actuators", Journal of Advanced Materials Letter, Vol. 4, (2013), 927-932. https://doi.org/10.5185/AMLETT.2013.5474
31. Kellici, S., Acord, J., Ball, J., Reehal, H. S., Morgan, D., Saha, B., "A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities", Journal of RSC Advances, Vol. 4, No. 29, (2014), 14858-14861. https://doi.org/10.1039/C3RA47573E
32. Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., Bieloshapka, I., "Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods", Journal of Electron Spectroscopy and Related Phenomena, Vol. 195, (2014), 145-154. https://doi.org/10.1016/j.elspec.2014.07.003
33. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., Tour, J. M., "Improved synthesis of graphene oxide", Journal of ACS Nano, Vol. 4, (2010), 4806-4814. https://doi.org/10.1021/nn1006368
34. Xu, Y., Bai, H., Lu, G., Li, C., Shi, G., "Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets", Journal of the American Chemical SocietyVol. 130, No. 18, (2008), 5856-5857. https://doi.org/10.1021/ja800745y
35. Verma, S., Mungse, H. P., Kumar, N., Choudhary, S., Jain, S. L., Sain, B., Khatri, O. P., "Graphene oxide: An efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes", Journal of Chemistry Communications, Vol. 47, (2011), 12673-12675. https://doi.org/10.1039/C1CC15230K
36. Urban, M. W., Vibrational spectroscopy of molecules and macromolecules on surfaces, Wiley, (1993). https://www.wiley.com/en-us/Vibrational+Spectroscopy+of+Molecules+and+Macromolecules+on+Surfaces-p-9780471528159
37. Tucureanu, V., Matei, A., Avram, A. M., "FTIR spectroscopy for carbon family study", Analytical Chemistry, Vol. 46, No. 6, (2016), 502-520. https://doi.org/10.1080/10408347.2016.1157013
38. Satish, B., Venkata Rao, K., Shilpa Chakra, C. H., Tejaswi, T., "Synthesis and characterization of graphene oxide and its antimicrobial activity against klebseilla and staphylococcus", Journal of International Advanced Biotechnology Research, Vol. 4, No. 1, (2013), 142-146. https://www.semanticscholar.org/paper/SYNTHESIS-AND-CHARACTERIZATION-OF-GRAPHENE-OXIDE-Bykkam-Rao/beaab6de1b628ad830dd10cb73c66e81a5986797
39. Aboutalebi, S. H., Gudarzi, M. M., Zheng, Q. B., Kim, J. K., "Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions", Journal of Advanced Function Materials, Vol. 21, No. 15, (2011), 2978-2988. https://doi.org/10.1002/adfm.201100448
40. Shi, L., Yang, J., Huang, Z., Li, J., Tang, Z., Li, Y., Zheng, Q., "Fabrication of transparent, flexible conducing graphene thin films via soft transfer printing method", Journal of Applied Surface Science, Vol. 276, (2013), 437-446. https://doi.org/10.1016/j.apsusc.2013.03.113
41. Nassar, M. M., "Thermal analysis kinetics of bagasse and rice straw", Journal of Energy Sources, Vol. 21, No. 1-2, (2010), 131-137. https://doi.org/10.1080/00908319950015000
42. Liñán-Montes, A., de la Parra-Arciniega, S. M., Garza-González, M. T., García-Reyes, R. B., Soto-Regalado, E., Cerino-Córdova, F. J., "Characterization and thermal analysis of agave bagasse and malt spent grain", Journal of Thermal Analysis and Calorimetry, Vol. 115, No. 1, (2014), 751-758. https://doi.org/10.1007/s10973-013-3321-y
43. Pendolino, F., Armata, N., Graphene oxide invironmental remediation process, Springer, (2017). https://doi.org/10.1007/978-3-319-60429-9
44. Hernandez, Y., Pang, S., Feng, X., Müllen, K., Graphene and Its Synthesis, Max Planck Institute for Polymer Research, Mainz, Germany, Elsevier, (2012).
45. Mindivan, F., "The synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (RGO)", International Scientific Journal Machines. Technologies. Materials. Vol. 10, No. 6, (2016), 32-35. https://stumejournals.com/journals/mtm/2016/6/32
46. Justh, N., Berke, B., László, K., Szilágyi, I. M., "Thermal analysis of the improved Hummers’ synthesis of graphene oxide", Journal of Thermal Analysis and Calorimetry, Vol. 131, (2018), 2267-2272. https://doi.org/10.1007/s10973-017-6697-2
47. Krishnamoorthy, K., Umasuthan, N., Mohan, R., Lee, J., Kim, S. J., "Antibacterial activity of graphene oxide nanosheets", Science of Advanced Materials, Vol. 4, (2012), 1-7. https://doi.org/10.1166/sam.2012.1402