نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بوعلی سینا، همدان، ایران.

2 گروه پژوهشی مواد غیر فلزی، پژوهشگاه نیرو، تهران، ایران.

چکیده

تصفیه انواع پساب­ های صنعتی و بازگردانی آب به چرخه مصرف از اهمیت زیادی برخوردار است. در این پژوهش با تولید نانوجاذب کامپوزیتی نایلون6/ نانوذرات زیرکونیا شرایط برای جداسازی کاتیون­ فلزات سنگین (مانند Cu، Ni و Co) به عنوان یکی از آلاینده­ های مهم آب بررسی شده است. نانوجاذب کامپوزیتی با مقادیر مختلف زیرکونیا توسط روش الکتروریسی تولید شد. به منظور بررسی ریزساختار و بنیان­ های مولکولی در نانو جاذب کامپوزیتی به ترتیب از آزمون­ های  SEM و FTIR استفاده شد. نتایج ریزساختارشناسی نشان داد که با افزایش نسبت سرامیک به پلیمر میانگین قطر الیاف از 387 به 105 نانومتر و تخلخل سطحی از 1/83 به 6/65 درصد کاهش یافت. علاوه بر این، از توزیع همگن نانوذرات روی الیاف کاسته و عیوب الکتروریسی مانند آگلومراسیون نانو­ذرات روی برخی الیاف مشاهده شد. افزودن نانوذرات زیرکونیا بنیان­ های مولکولی نایلون 6 را تغییر نداد. با توجه به توزیع و ایجاد مواضع فیزیکی همگن توسط نانوذرات زیرکونیا، نسبت سرامیک به پلیمر برابر 88/0 (g/g) به عنوان ترکیب بهینه انتخاب شد. تغییرات زاویه تماس آب روی سطح نانوجاذب نشان داد که سطح مورد مطالعه در لحظه ابتدایی تماس آب­ گریز و در ادامه آب­ دوست است. بررسی سینتیک جذب کاتیون فلزات سنگین توسط نانوجاذب نشان داد که از مدل شبه درجه اول تبعیت می کند. بیشینه مقدار جذب کاتیون فلزات Cu، Ni و Co به ترتیب برابر 6/9، 7/8 و 8/4 میلی­ گرم بر سانتی­متر مربع بود که بیانگر بهره­ وری بالای نانوجاذب کامپوزیتی نایلون6/ زیرکونیا در جذب کاتیون­ های فلزات سنگین است. بنابراین با توسعه انواع مختلف نانوجاذب پلیمر- سرامیک امکان بازچرخانی پساب صنعتی فراهم می­ شود.

کلیدواژه‌ها

عنوان مقاله [English]

Kinetic Study on Surface Adsorption of Heavy Metal Cations by Nylon6/Zirconia Nano-absorbent

نویسندگان [English]

  • Ali Mosayebi 1
  • Hamid Esfahani 1
  • Fatemeh Dabir 2

1 Department of materials Engineering, faculty of Technical and engineering , Bu-Ali Sina University, Hamedan, Iran.

2 Non-metallic Materials Department, Niroo Research Institute (NRI), Tehran, Iran.

چکیده [English]

Industrial wastewater treatment and recycling the treated water are drawn to attention. In this study, the removal of heavy metal cations (e.g. Cu, Ni, Co) as an important pollutants, has been investigated by applying the Nylon6/zirconia nano-composite absorbent. Nano-composite membranes containing different amount of zirconia nano-particles (NPs) were synthesized via electrospinning method. To study the microstructure and functional molecule groups of nano-absorbent, SEM and FTIR techniques were used, respectively. The results showed that the average diameter size of fibers and surface porosity decreased from 387 to 105 nm and 83.1 to 65.6 % with increasing the zirconia content, respectively. Furthermore, zirconia NPs were distributed heterogeneously and also electrospinning defects such as zirconia agglomerates were observed in the mat. Adding the zirconia NPs did not affect the functional molecule groups of Nylon6. According to the homogenous distribution and also creation of active sites by zirconia NPs, the ratio of zirconia to Nylon6 equals to 0.88 (g/g) was selected as the optimized composition. Water contact angle variations on the surface of nano- absorbent indicated that the mentioned surface had hydrophobic behavior at the beginning time of contact and then it switched to the hydrophilic manner. Kinetic study on the adsorption of heavy metal cations showed that it was followed by first-pseudo order model. The maximum adsorption was recorded 9.6, 8.7 and 4.8 mg/cm2 respect to the Cu, Ni, and Co cations. It suggests that the Nylon6/zirconia nano-composite has high efficiency to adsorb heavy metal pollutants. Eventually, the water recycling will be achieved by development of polymer-ceramic nano-composite.
 

کلیدواژه‌ها [English]

  • Adsorption Kinetic
  • Heavy Metals Cations
  • Microstructure
  • Nano-fibers
  • Zirconia Nano-particles
  1. Ilona Heidmann, Wolfgang Calmano, Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation, Journal of Hazardous Materials 152 (2008) 934–941.
  2. سید سیاوش مدائنی، غشا و فرایندهای غشایی، فصل اول، دوم، انتشارات طاق بستان،1381.
  3. Lin Hu, Xue-Wu Yan, Xue-Ji Zhang, Dan Shan, Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers, Applied Surface Science 428 (2018) 819–824.
  4. R. Wang, A. Lajevardi-Khosh, S. Choi, J. Cha, Regenerative surface plasmon resonance (SPR), biosensor: Real-time measurement of fibrinogen in undiluted human serum using the competitive adsorption of proteins, Biosens. Bioelectron. 28(2011) 304-307.
  5. L.A. Chen, R.G. Carbonell, G.A. Serad, Recovery of proteins and other biological compounds from food processing wastewaters using fibrous materials and polyelectrolytes, Water. Res., 34(2000) 510-518.
  6. H. Zhang, X. Jia, F. Han, J. Zhao, Y. Zhao, Y. Fan, X. Yuan, Dual-delivery of VEGF and PDGF by doublelayered electrospunmembranes for blood vessel regeneration, Biomaterials. 34 (2013) 2202-2212.
  7. M.M.A. Shirazi, A. Kargari, S. Bazgir, M. Tabatabaei,M.J.A. Shirazi, M.S. Abdullah, T. Matsuura, A.F. Ismail, Characterization of electrospun polystyrene membranefor treatment of biodiesel's water-washing effluent usingatomic force microscopy, Desalination. 329 (2013) 1-8.
  8. Fang Jian, Niu HaiTao, Lin Tong and Wang XunGai.,Applications of electrospun nanofibers, Chinese Science, Bulletin, (2008), 2265-2286.
  9. Tatsuya Okuyama, Hirotaka Maeda and Emile HidekiIshida, Preparation of porous poly(L-lacticacid)/tobermorite composite membranes viaelectrospinning and heat treatment, J Mater Sci, 10853, (2011), 5834-8.
  10. Pravin Bhattarai, Keshar Bdr. Thapa, Rajesh Bdr. Basnet and Saurav Sharma3 “ Electrospinning: How to Produce Nanofibers Using Most Inexpensive Technique? An Insight into the Real Challenges of Electrospinning Such Nanofibers and Its Application Areas “pp:401-405 ,IJBAR (2014) 05 (09)
  11. Seema Agarwal, Joachim H. Wendorff, Andreas Greiner.:Use of electrospinning technique for biomedical applications:polymer.2008.09.014.
  12. H. Esfahani, M. P. Prabhakaran, E. Salahi, A. Tayebifard, M. Keyanpour-Rad, M.R. Rahimipour, S. Ramakrishna, Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: Kinetics and isotherm, Journal of Colloid and Interface Science 443 (2015) 143–152.
  13. Haiyan Li, Yachen Xu, He Xua and Jiang Chang, Electrospun membranes: control of the structure and structure related applications in tissue regeneration and drug delivery” (2014), 2, 5492
  14. Huan Zhou, Ahmed H. Touny, Sarit B. Bhaduri., Fabrication of novel PLA/CDHA bionanocomposite fibers for tissue engineering applications via electrospinning, J Mater Sci: Mater Med, 22, (2011),1183–1193.
  15. S.G. Gholap, D.A. Musale, S.S. Kulkarni, S.K. Karode, U.K. Kharul, Protein and buffe transport through anionically grafted nylon membranes, J. Membr. Sci. 183 (2001) 89–99.
  16. L.D. Tijing, J.S. Choi, S. Lee, S.H. Kim, H.K. Shon, Recent progress of membranedistillation using electrospun nanofibrous membrane, J. Membr. Sci. 453 (2014)435–462
  17. M.M.A. Shirazi, A. Kargari, S. Bazgire, M. Tabatabaei, M.J.A. Shirazi, T. Matsuura, A.F. Ismail, Characterization of electrospun polystyrene membrane for treatment of biodiesel's water-washing effluent using atomic force microscopy, Desalination 329 (2013) 1–8.
  18. D. Aussawasathien, C. Teerawattananon, A. Vongachariya, Separation of micron to sub-micron particles from water: Electrospun nylon-6 nanofibrous membranes as pre-filters, J. Membr. Sci. 315 (2008) 11–19.
  19. Kibrom Alebel Gebru, Chandan Das, Removal of Pb (II) and Cu (II) ions from wastewater using compositeelectrospun cellulose acetate/titanium oxide (TiO2) adsorbent, Journal of Water Process Engineering 16 (2017) 1–13.
  20.  Saeed Yari, Saeed Abbasizadeh, Seyyed Ebrahim Mousavi, Mojtaba Saei Moghaddam, Abdolsamad Zarringhalam Moghaddam, Adsorption of Pb(II) and Cu(II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups, Process Safety and Environmental Protection 9 4 (2015) 159–171.
  21. Dariush Alipour, Ali Reza Keshtkar, Mohammad Ali Moosavian, Adsorption of thorium(IV) from simulated radioactive solutions using a novel electrospun PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto groups: Study in single and multi-component systems, Applied Surface Science 366 (2016) 19–29.
  22. Dawoud Al Mahrouqi, Jan Vinogradov, Matthew D. Jackson, Zeta potential of artificial and natural calcite in aqueous solution, Advances in Colloid and Interface Science (2016).
  23. E. Quiroga, P.M. Centres, N.A. Ochoa, A.J. Ramirez-Pastor, Fractional statistical theory of adsorption applied to protein adsorption J.    Colloid Interface Sci. 390 (2013) 183–188.
  24. E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, Journal of Colloid and Interface Science 280 (2004) 309–314.
  25. D. A. Skoog, F. J. Holler, T. A. Nieman, Principle of instrumental analysis, 5th edn, Belmont, CA, Thomson Learning (1998).
  26. 16. M. Yanilmaz, M. Dirican, X. Zhang, Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries, Electrochim. Acta 133 (2014) 501–508.
  27. Luo, Y. R., "Comprehensive Handbook of Chemical Bond Energies", CRC Press, Boca Raton, FL, 2007.
  28. Md. Shahidul Islama, Jeffrey R. McCutcheonb, Md. Saifur Rahaman, A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance, Journal of Membrane Science 537 (2017) 297–309.
  29. M. Porubska, O. Szöllos, A. Kónová, I. Janigová, M. Jasková, K. Jomová, I. Chodák, FTIR spectroscopy study of polyamide-6 irradiated by electron and proton beams, Polymer Degradation and Stability, 97, (2012), 523-531.
  30. Kanogwan Tohdee, Lupong Kaewsichan, Asadullah, Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite, Journal of Environmental Chemical Engineering, 6, (2018), 2821-2828.
  31. Nan Wang, Chien Hsu, Lihua Zhu, Shiojenn Tseng, Jyh-Ping Hsu, Influence of metal oxide nanoparticles concentration on their zeta Potential, Journal of Colloid and Interface Science 407 (2013) 22–28.
  32. Lei Li, Yanxiang Li, Lixia Cao, Chuanfang Yang, Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning, Carbohydrate Polymers 125 (2015) 206–213.